

Содержание:

1. Общие положения	4
2. Термины и определения	4
3. Классификация ограничений мощности	
4. Материалы, представляемые для согласования ограничений	7
5. Порядок расчета и принципы учета ограничений ТЭС	9
6. Порядок расчета и принципы учета ограничений АЭС	19
7. Условия проведения перемаркировки оборудования	20
8. Мероприятия по устранению ограничений	
установленной мощности	21
9. Определение величины ограничений установленной мощности	
для каждой энергоустановки и ГТПГ в целом	23
10. Порядок определения расчетных исходных	
метеорологических данных: относительной влажности	
наружного воздуха и скорости ветра	24
11. Расчет ограничений, связанных с обеспеченностью электрической	
мощности системами технического водоснабжения	27
11.1. Электростанции с циркуляционными	
системами водоснабжения	27
11.1.1. Алгоритм расчета для электростанций с	
градирнями (брызгальными бассейнами)	27
11.1.2. Алгоритм расчета для электростанций с прудами	
(водохранилищами) – охладителями	40
11.2. Электростанции с прямоточными системами	
технического водоснабжения	50
11.2.1. Алгоритм расчета для электростанций с прямоточной	
схемой при отсутствии экологических ограничений по	
температуре сбросной воды	50
11.2.2. Алгоритм расчета для электростанций с прямоточной	
схемой при наличии ограничений по температуре	
сбросной воды	53
11.2.3. Алгоритм расчета для электростанций с прямоточной	
схемой и рециркуляцией при наличии ограничений	
по температуре сбросной воды	59
12. Определение электрической мощности турбин различных	
типов по диаграммам режимов	61
12.1. Работа с диаграммой режимов конденсационной турбины	,
типа «К»	6
12.2. Работа с диаграммой режимов турбины с	
противодавлением типа «Р»	62
12.3. Работа с диаграммами режимов турбин	
с регулируемыми теплофикационными отборами (типа «Т»)	62
12.4. Работа турбин типа «К» в режиме ухудшенного вакуума.	
Работа турбин с регулируемыми теплофикационными	

отборами (типа «Т») на встроенном пучке конденсатора	68
12.5. Работа с диаграммой режимов турбины	
с регулируемыми производственным и теплофикационным	
отборами пара (типа «ПТ»)	69
13 Причины ограничений мощности турбоагрегатов	72
13.1. Ограничения мощности из-за дефектов оборудования	72
13.2. Ограничения мощности, связанные с отклонением от проек	та74
14. Причины ограничений паропроизводительности котлоагрегатов .	75
14.1. Максимальная производительность топливоподачи	75
14.2. Недостаток производительности тяго-дутьевого оборудовани	я78
14.3. Ограничение паропроизводительности котла, обуловленное	
работой систем пылеприготовления	84
14.4. Ограничение паропроизводительности котла из-за ошибок в	
проектировании и дефектов оборудования котельных установок	86
Приложения	
Перечень используемой литературы и	
нормативно-технической документации	165

1. Общие положения

- 1.1. Настоящие Методические указания по определению и согласованию ограничений установленной электрической мощности тепловых и атомных электростанций (далее по тексту Методические указания) разработаны в соответствии с Приложением №13 к Договору о присоединении к торговой системе оптового рынка «Регламент определения готовности генерирующего оборудования участников оптового рынка к выработке электроэнергии».
- 1.2. Настоящие Методические указания определяют основные условия, при которых проводится расчет ограничений установленной электрической мощности тепловых и атомных электростанций (далее ТЭС и АЭС), их согласование ОАО «СО ЕЭС».
- 1.3. Настоящие Методические указания являются основным руководящим документом для ТЭС и АЭС субъектов оптового рынка электроэнергии (мощности) (далее ОРЭ) при проведении расчетов величин ограничений установленной электрической мощности (далее ограничения), а также филиалов ОАО «СО ЕЭС» ОДУ, РДУ при осуществлении контроля корректности проведенных электростанциями расчетов и согласовании ограничений при определении готовности генерирующего оборудования к несению нагрузки, а также объемов генерирующей мощности, которые могут быть поставлены (предоставлены) на оптовый рынок (аттестованных объемов мощности).
- 1.4. Проверка корректности представляемых расчетов осуществляется ОАО «СО ЕЭС» как самостоятельно, так и с возможным привлечением по инициативе ОАО «СО ЕЭС» независимых экспертных организаций.

2. Термины и определения

- 2.1. **Установленная электрическая мощность** значение номинальной активной электрической мощности (МВт) в соответствии с техническими условиями или паспортом на оборудование.
- 2.2. Группа оборудования совокупность конденсационных турбоагрегатов или турбоагрегатов с регулируемыми отборами пара с одинаковыми параметрами свежего пара (а для энергоблоков еще и одинаковой мощности), а также всех котлов (как пылеугольных, так и газомазутных), реакторных установок, обеспечивающих работу данных агрегатов. [1]

Коды групп оборудования приведены в приложении 10 к настоящим Методическим указаниям.

2.3. **Подгруппа оборудования ТЭС** — совокупность только пылеугольных или только газомазутных котлов и совместно работающих с ними конденсационных турбоагрегатов или турбоагрегатов с регулируемыми отборами пара соответствующего давления свежего пара (а для энергоблоков еще и одинаковой мощности).

При этом группа оборудования с поперечными связями, у которой на один коллектор работают пылеугольные и газомазутные котлы, условно приравнивается к пылеугольной подгруппе. [1]

- 2.4. Ограничение мощности электростанции значение вынужденного недоиспользования установленной мощности. [3]
- 2.5. Собственное ограничение мощности энергоустановки ожидаемая величина вынужденного недоиспользования установленной мощности энергоустановки, обусловленная влиянием факторов, распространяющих свое действие только на данную энергоустановку.
- 2.6. Общегрупповое ограничение мощности ожидаемая величина вынужденного недоиспользования установленной мощности совокупности энергоустановок, обусловленная влиянием факторов, распространяющих свое действие одновременно на все входящие в данную совокупность энергоустановки.
- 2.7. Общестанционное ограничение мощности ожидаемая величина вынужденного недоиспользования установленной мощности электростанции, обусловленная влиянием факторов, распространяющих свое действие одновременно на всю электростанцию в целом.
- 2.8. **Ограничение мощности ГТПГ** доля ожидаемых ограничений мощности электростанции, рассчитанных в соответствии с настоящими Методическими указаниями и относимых на оборудование, входящее в группу точек поставки генерации (далее ГТПГ).
- 2.9. Располагаемая мощность электростанции максимальная технически возможная мощность электростанции с учетом ограничений и допустимого превышения над установленной мощностью отдельных агрегатов.
- 2.10. Расчетный период состоящий из расчетных подпериодов временной промежуток времени, на который проводится расчет и защита ограничений установленной мощности в текущем календарном году.

Расчетным периодом является каждый месяц предстоящего календарного года.

2.11. Расчетный подпериод — часть расчетного периода, состоящая из календарных суток, в пределах которых распределение тепловых нагрузок, объемы отпуска тепла, а также иные исходные данные (кроме состава готового к несению нагрузки оборудования — вывод оборудования в плановые ремонты изменением исходных данных не считается) остаются неизменными.

3. Классификация ограничений мощности

- 3.1. Ограничения установленной электрической мощности подразделяются на: технические;
- временные.
- 3.2. **Технические ограничения мощности** снижение установленной мощности энергоустановки из-за не устранимых в течение ремонтной кампании

планируемого календарного года конструктивных дефектов и изменений относительно проекта, износа оборудования, отработавшего расчетный ресурс, неудовлетворительного технического состояния оборудования, несоответствия номинальной производительности и количества отдельных единиц оборудования установленной мощности.

Для устранения технических ограничений мощности проводятся реконструкция, модернизация, замена оборудования, достройка отсутствующих сооружений, что в обязательном порядке отражается в прилагаемом перечне мероприятий по устранению ограничений мощности, выполнение которых должно быть осуществлено в соответствии с требованиями, установленными настоящими Методическими указаниями.

- 3.3. **Временные ограничения мощности** снижение установленной мощности энергоустановки, не обусловленное техническим состоянием оборудования и определяемое влиянием факторов, действие которых носит переменный во времени характер.
 - 3.4. Временные ограничения мощности подразделяются на:
- длительного действия;
- сезонного действия;
- апериодического действия.
 - 3.4.1. **Временные ограничения длительного действия** снижение установленной мощности энергоустановки, обусловленное причинами, действующими непрерывно во временном промежутке, превышающим календарный год.
 - 3.4.2. **Временные ограничения сезонного действия** снижение установленной мощности энергоустановки, обусловленное сезонно действующими факторами (например, снижение тепловых нагрузок, повышенное потребление тепла, повышение температуры воды на входе в конденсатор, экологические ограничения и пр.).
 - 3.4.3. **Временные ограничения апериодического действия** снижение установленной мощности энергоустановки, обусловленное факторами (не сезонного характера), имеющими место в любом временном промежутке внутри календарного года и расчетного периода (например, в связи с плановым ремонтом сетевых объектов, ограничения на выдачу мощности или необходимость работы в режиме синхронного компенсатора, прекращение с определенного месяца отпуска тепла и пара потребителю и пр.).

Классификатор ограничений установленной мощности приведен в приложении 1 к настоящим Методическим указаниям.

4. Материалы, представляемые для согласования ограничений

- 4.1. Обосновывающие документы и расчеты подаются на рассмотрение в соответствующие филиалы ОАО «СО ЕЭС» РДУ не позднее установленного Регламентом согласования ограничений установленной мощности срока.
- 4.2. Пакет документов, подаваемых для рассмотрения, в обязательном порядке должен содержать:
- Пояснительную записку, включающую расчеты, сформированную в соответствии с предъявляемыми в настоящих Методических указаниях требованиями.

Пояснительная записка в обязательном порядке должна содержать следующие главы:

- вводную главу, содержащую общую информацию по электростанции (место расположения, год ввода в эксплуатацию, цели строительства);
- главу, содержащую описание и технические параметры имеющегося на электростанции основного и вспомогательного энергетического оборудования (краткое описание основного и вспомогательного энергетического оборудования главного корпуса, описание схемы технического водоснабжения, топливного хозяйства, схем выдачи электрической и тепловой энергии с приведением технических характеристик оборудования, используемых обосновывающих расчетах, необходимых пояснений ПО соответствующим принципиальным схемам);
- главу, содержащую описание причин прогнозируемых ограничений и обоснование принятой кодировки;
- главу, содержащую для каждого расчетного подпериода:
 - исходные данные для расчета с приведением описания оборудования, его технических характеристик, а также материального баланса по форме приложения 4 к настоящим Методическим указаниям;
 - расчеты по каждой причине, содержащие подробную информацию о каждом этапе, то есть для каждого этапа расчета должен соблюдаться принцип «формула значения ответ», в том числе должны быть приведены графические примеры работы со характеристиками, используемыми в расчетах;
- главу, посвященную анализу необходимых мероприятий по устранению ограничений мощности и отчетам об их выполнении.
- контактную информацию ответственных исполнителей на электростанции, в филиалах или в исполнительном аппарате компании-собственника.
- Сводную таблицу с посуточной разбивкой и структурой ограничений установленной мощности для расчетного периода (при согласовании на год по каждому месяцу). Форма сводной таблицы приведена в приложении 2 к настоящим

Методическим указаниям (обязательна для всех электростанций вне зависимости от наличия ограничений);

- Сводную таблицу ограничений установленной мощности. Форма сводной таблицы при согласовании ограничений на этапе годового и месячного планирования приведена в приложениях 8 и 9 к настоящим Методическим указаниям соответственно.
 - Принципиальные схемы:
 - тепловая схема электростанции;
 - балансовая схема системы технического водоснабжения;
 - схема выдачи тепловой мощности;
 - при наличии соответствующих ограничений схема системы гидрозолоудаления, схема и параметры водохранилища-охладителя, схема расположения контрольных пунктов замеров параметров воды с указанием на ней необходимых для расчетов геологических параметров русла реки и расстояний;
 - иные схемы, необходимые для проведения обосновывающих расчетов.

При необходимости по дополнительному запросу ОАО «СО ЕЭС» в пакет документов включаются развернутые схемы.

– Заключения экспертных организаций, результаты испытаний основного и вспомогательного энергетического оборудования (сроком давности не более 5 лет относительно момента подачи документов), сформированные в соответствии с требованиями действующей нормативно-технической документации, регламентирующей проведение подобных испытаний (с приведением документов, подтверждающих право экспертной организации на проведение испытаний, а также копии соответствующего нормативного документа).

Результаты испытаний, проведенных без привлечения экспертных организаций, к рассмотрению не принимаются.

– Сводную таблицу паспортных данных по форме приложения 2.1 к настоящим Методическим указаниям и копии соответствующих страниц паспортов (инструкций по эксплуатации, технических условий на поставку) основного и вспомогательного энергетического оборудования (в том числе, трубопроводов свежего и отборного пара), содержащих их основные паспортные параметры)

При необходимости по дополнительному запросу ОАО «СО ЕЭС» в пакет документов включаются паспорта основного и вспомогательного энергетического оборудования (инструкции по эксплуатации, технические условия на поставку) в полном объеме.

- Копии соответствующих страниц нормативно-технической документации электростанции, содержащие диаграммы режимов работы турбин, необходимые поправочные кривые, номограммы изменения давления в нерегулируемых и регулируемых отборах, характеристики конденсаторов, градирен, характеристики параллельной работы насосов и прочие необходимые для проверки расчетов характеристики.
 - Справочные данные метеослужб.

- Предварительные графики ремонтов основного и вспомогательного оборудования в графическом виде.
- Статистические данные за предыдущие 36 месяцев и прогноз тепловых нагрузок на планируемый период по форме приложения 3 к настоящим Методическим указаниям.
- Акты о месячном отпуске тепловой энергии от источника теплоты в отсканированном виде за каждый из указанных 36 месяцев.
- Прогноз распределения тепловых нагрузок, указанных в таблице, заполненной по форме приложения 3 к настоящим Методическим указаниям, между отборами (противодавлением) турбин, встроенными пучками конденсаторов, редукционными охлаждающими установками (далее РОУ), пиковыми водогрейными котлами (далее ПВК) и пиковыми паровыми котлами в табличном виде по каждому подпериоду каждого месяца расчетного периода по форме приложения 4 к настоящим Методическим указаниям.
- Копии нормативно-технических документов (официально изданных методик, руководящих указаний), содержащих принципы и алгоритмы, использованные для расчетов ограничений мощности по причинам, методы расчета которых не описаны в настоящих Методических указаниях.
- Отчет о выполнении за истекший период мероприятий по сокращению ограничений установленной мощности, а также план мероприятий на предстоящий период, сформированный в соответствии с требованиями главы 8 настоящих Методических указаний.
- 4.3. В случае полного или частичного непредставления документов, обозначенных в п. 4.2 настоящих Методических указаний, ограничения мощности к рассмотрению не принимаются и не согласовываются.
- 4.4. На основе представленных материалов ОАО «СО ЕЭС» в установленные Регламентом сроки принимает решение о возможности согласования объемов ограничений, обусловленных соответствующими причинами.
- 4.5. Ограничения считаются согласованными только после получения в соответствии с Регламентом согласовывающих подписей сводных таблиц ограничений уполномоченных представителей ОАО «СО ЕЭС».

5. Порядок расчета и принципы учета ограничений ТЭС

- 5.1. Расчет ограничений установленной мощности ведется для всех календарных суток расчетного периода.
- 5.2. Допускается проведение одного расчета для всех суток расчетного подпериода.
- 5.3. Расчет ограничений ведется по каждой энергоустановке с последующим суммированием ограничений по соответствующим ГТПГ.
- 5.4. При одновременном действии нескольких факторов количественный учет величины ограничений проводится согласно изложенным ниже требованиям:
 - 5.4.1. Очередность учета ограничений мощности должна соответствовать схеме, приведенной на рис. 5.1.

ПРИМЕЧАНИЕ:

- 1 для группы (очереди) энергоустановок с поперечными связями, группы оборудования с поперечными связями ограничения, обусловленные работой главных паропроводов и общих паровых магистралей;
- 2 в результате расчетов должна быть определена величина максимально возможной паропроизводительности котла или парогенератора (максимально возможной суммарной паропроизводительности котлов группы энергоустановок (очереди энергоустановок) с поперечными связями, группы оборудования с поперечными связями) и соответствующий расход пара в голову турбины (распределение суммарной паропроизводительности группы котлов между турбоагрегатами);
- 3 в результате расчетов должны быть определены величины ограничений установленной электрической мощности в мегаваттах;
- 4 для группы агрегатов (очереди оборудования), группы оборудования, снабжающих теплом промышленных и/или отопительных параметров общего потребителя.

Рис. 5.1. Приоритетность учета ограничений

5.4.2. Исходные данные для расчетов ограничений (а, следовательно, и их итоговая величина) более низкого уровня приоритета должны определяться с учетом одновременного действия ограничений более высокого уровня приоритета.

Например, величина ограничений установленной мощности энергоустановки по причине повышения температуры охлаждающей воды в летний период (недостатка количества градирен по проекту, недостаточной производительности циркуляционных насосов и пр.) должна определяться за вычетом величины ограничений, например, по снижению паропроизводительности котлов или по отсутствию нагрузок производственного отбора на турбинах типа «ПТ» (конструктивные особенности). То есть расчет данной величины должен проводиться на сниженный расход пара в конденсатор турбоустановки.

- 5.5. Расчет ограничений на этапе годового и месячного планирования ведется на полный состав основного и вспомогательного энергетического оборудования за исключением оборудования, находящегося в рассматриваемом расчетном периоде в длительном простое, а также за исключением случаев, оговоренных в п. 6.2 настоящих Методических указаний. При этом:
 - 5.5.1. Под длительным простоем понимаются: реконструкция, модернизация, послеаварийное восстановление, длительный ремонт, консервация основного и вспомогательного энергетического оборудования заявленной субъектом ОРЭ продолжительностью более 12 месяцев.
 - 5.5.2. Длительный простой оборудования в предстоящем расчетном периоде должен быть согласован ОАО «СО ЕЭС» и включен с соответствующими сроками начала и окончания работ в плановый годовой (месячный) график ремонтов основного и вспомогательного энергетического оборудования с нулевым снижением мощности за исключением длительного простоя турбоагрегатов с конденсаторами, включаемого в плановый годовой (месячный) график ремонтов со снижением, соответствующим номинальной мощности. При этом для турбоагрегатов с противодавлением величина ограничений принимается равной номинальной мощности.
 - 5.5.3. Начало или окончание длительного простоя в течение расчетного периода является основанием для обязательного разделения соответствующего расчетного периода на расчетные подпериоды.
- 5.6. Учет метеорологических параметров при расчетах ограничений осуществляется следующим образом:
 - 5.6.1. Расчет ограничений ведется на среднесуточную среднемноголетнюю температуру наружного воздуха (используются данные за календарные последние 5 лет).
 - 5.6.2. Данные по среднемноголетней среднесуточной температуре наружного воздуха могут быть получены от уполномоченных лицензированных организаций в виде официальной справки, которая в обязательном порядке прилагается к пояснительной записке.

- 5.6.3. При отсутствии справочных данных от метеослужб может быть использована информация о среднесуточных среднемноголетних температурах наружного воздуха за последние 30 лет (климатическая норма), приведенная в официальных изданиях, в том числе, и в действующих СНиП.
- 5.6.4. При выполнении требований п. 5.1 настоящих Методических указаний допускается для уменьшения количества необходимых расчетов на начальных этапах при определении расчетной влажности использовать среднемесячные среднемноголетние температуры наружного воздуха.
- настоящих vчетом П. 5.6.4 Методических среднемесячная относительная влажность наружного воздуха определяется расчетным путем через среднемесячное парциальное давление водяного пара (упругость водяного пара) (см. п. 10.1 настоящих Методических указаний). Среднемесячное парциальное давление водяного пара принимается для соответствующего региона согласно данным действующих СНиП «Строительная климатология».
- 5.6.6. С учетом п. 5.6.4 настоящих Методических указаний среднемесячная расчетная скорость ветра определяется путем приведения среднемноголетней среднемесячной скорости на высоте флюгера h_{φ} к скорости ветра на высоте 2 м от поверхности водохранилища или поверхности земли (см. п. 10.2 настоящих Методических указаний).
- 5.6.7. Высоту флюгера и соответствующие среднемесячные значения скорости ветра на его высоте принимаются по данным действующих на территории России справочников по климату или по официальным справочным данным от метеослужб.
- 5.6.8. Для электростанций с прямоточной системой технического водоснабжения расчетный расход воды в реке определяется для каждого месяца путем усреднения соответствующих среднемесячных значений расходов воды за не менее чем 12-ти летний ряд наблюдений по данным с ближайшего, вышележащего по течению реки, контрольного створа.
- 5.6.9. Исходные температуры охлаждающей воды для электростанций с прямоточной системой технического водоснабжения определяются путем усреднения соответствующих среднемесячных значений температур воды, определяемых как средняя величина по створу, за последние 5 лет наблюдений по данным с ближайшего, вышележащего по течению реки, контрольного створа, а для электростанций с оборотной системой охлаждения, для которых источниками охлаждающей воды являются открытые водоемы (заливы, водохранилища) по данным местных гидрометеорологических служб.
- 5.7. Прогнозные объемы отпуска тепла в паре и горячей воде определяются следующим образом:
 - 5.7.1. В качестве исходных данных используются фактические объемы отпуска тепла, включающие, в том числе, объемы тепла, отпущенные на собственные нужды электростанции, усредненные по каждому месяцу за

соответствующие последние 36 календарных месяцев, начиная с месяца n-2 (далее статистический ряд), где n – месяц подачи документов.

- 5.7.2. Подтверждающими документами являются сводные таблицы фактических и прогнозных объемов отпуска тепла по форме приложения 3 к настоящим Методическим указаниям, сформированных на основании Актов о месячном отпуске тепловой энергии от источника теплоты с учетом отпуска тепла и пара на производственные нужды электростанции и соответствующих имеющимся в ОАО «СО ЕЭС» статистическим данным. Сводные таблицы должны быть подписаны техническим руководителем электростанции.
- 5.7.3. При формировании прогнозных объемов отпуска тепла фактические данные приводятся к условиям, при которых не должны учитываться имевшие место факторы, приведшие к кратковременному существенному изменению (увеличению, сокращению или прекращению отпуска тепла, например, в связи с испытаниями теплосети, профилактическими работами на оборудовании потребителя пара и пр.).
- 5.7.4. Приведение фактических данных к упомянутым в п. 5.7.3 настоящих Методических указаний условиям осуществляется путем замены фактических объемов отпуска тепла соответствующего месяца статистического ряда, в котором имел место подобный фактор, на среднеарифметическую величину объемов отпуска тепла в оставшиеся аналогичные месяцы статистического ряда, в течение которых действие таких факторов отсутствовало.
- 5.7.5. В случае если для рассматриваемого расчетного периода какой-либо из упомянутых в п. 5.7.3 настоящих Методических указаний факторов имел место во всех трех аналогичных месяцах статистического ряда, однако действие такого фактора не прогнозируется в течение рассматриваемого расчетного периода, для такого расчетного периода в качестве прогнозируемого объема отпуска тепла принимаются максимальный из прогнозных объемов аналогичных расчетных периодов, сформированных в соответствии с требованиями п.п. 5.7.3, 5.7.4 настоящих Методических указаний. Аналогичными расчетными периодами в таких случаях являются:
 - декабрь, январь, февраль;
 - ноябрь, март;
 - октябрь, апрель;
 - сентябрь, май;
 - июнь, июль, август.
- 5.7.6. В случае если по состоянию на момент подачи документов, прогнозируется наличие упомянутых в п. 5.7.3 настоящих Методических указаний факторов в каком-либо расчетном периоде:
 - данный расчетный период должен быть разбит на расчетные подпериоды в соответствии с временем начала и окончания действия данных факторов;
 - прогнозные объемы отпуска тепла, определенные в соответствии с требованиями п.п. 5.7.3, 5.7.4 настоящих Методических указаний,

- разбиваются пропорционально продолжительности расчетных подпериодов;
- объем отпуска тепла за расчетный подпериод, в течение которого прогнозируется действие данных факторов, уменьшается на соответствующую величину.
- 5.7.7. При необходимости учета существенного изменения потребления пара отдельными потребителями при формировании прогнозных объемов отпуска тепла данный учет осуществляется при выполнении следующих условий:
 - изменение максимального объема отпуска пара отдельному потребителю составляет более 50 Гкал/час;
 - изменение объемов отпуска пара носит непрерывный характер, имеет место на момент подачи документов или прогнозируется, начиная с определенного расчетного периода (подпериода);
 - представлены заверенные копии документов, подтверждающих факт заключения, расторжения или изменения договоров на отпуск пара данному потребителю, включая уведомительные письма потребителя;
 - отдельно приведены помесячные статистические данные по объемам отпуска пара данному потребителю, подтверждающие факт изменения объема, в случае, если изменение произошло в течение фактического периода (36 календарных месяцев).
- 5.7.8. При выполнении перечисленных в п. 5.7.7 настоящих Методических указаний условий формирование прогнозных объемов отпуска тепла осуществляется в следующем порядке:
 - 5.7.8.1. Прогнозные объемы отпуска тепла, формируемые путем усреднения фактических данных за соответствующие последние 36 календарных месяцев в соответствии с требованиями п.п. 5.7.3-5.7.5 настоящих Методических указаний, определяются без учета объемов отпуска пара потребителю, у которого зафиксировано существенное их изменение в течение фактического периода;
 - 5.7.8.2. Объемы отпуска пара такому потребителю для каждого расчетного периода (подпериода) определяются отдельно как среднеарифметическое значение месячных объемов за аналогичные месяцы фактического периода с момента появления изменения до месяца n-2, где n месяц подачи документов, а для потребителя, в отношении которого только прогнозируется изменение объемов, определяется соответствующая величина изменения для каждого расчетного периода (подпериода);
 - 5.7.8.3. Суммарные прогнозные объемы отпуска тепла электростанцией в расчетном периоде (подпериоде) определяются путем суммирования по соответствующим месяцам объемов отпуска тепла, полученных в п.п. 5.7.8.1 и 5.7.8.2 настоящих Методических указаний.

- 5.8. При распределении тепловых нагрузок между отборами (противодавлением) турбин, встроенными пучками конденсаторов, РОУ и ПВК необходимо руководствоваться следующими принципами:
 - 5.8.1. Распределение тепловых нагрузок между отборами (противодавлением) турбин, РОУ и ПВК должно осуществляться по принципу обеспечения минимального объема ограничений в целом по электростанции по результатам расчетов по всем причинам их вызывающим, в том числе, с учетом допустимого превышения технически возможной мощности отдельных энергоустановок над их установленной мощностью и условия не превышения суммарной технически возможной мощности энергоустановок, входящих в ГТПГ, над ее суммарной установленной мощностью.

Например, должен соблюдаться приоритет загрузки противодавления по отношению к производственным отборам, при отсутствии или минимальных нагрузках производственного отбора на турбинах типа «ПТ» загрузка теплофикационных отборов производиться не должна, на турбинах, конденсатор которых находится в заведомо более худшем состоянии или худших условиях, должна обеспечиваться максимальная загрузка отборов и пр.

- 5.8.2. Обосновывающие расчеты должны быть дополнены тепловой схемой. В расчетах должны быть представлены материальный и тепловой балансы по электростанции в целом и по каждой единице основного и вспомогательного оборудования (основной, встроенный пучки конденсатора, сетевые подогреватели, пиковые бойлера, ПВК и пр.)
- 5.8.3. Общее уравнение баланса по пару для каждой турбины выглядит следующим образом:

$$D_0 = D_{\Pi} + D_T + D_{pez} + D_{\kappa}, (5.1)$$

где D_0 – расход свежего пара в голову турбины;

 D_{II} – отпуск пара производственных параметров;

 $D_{\scriptscriptstyle T}$ – отпуск пара из теплофикационных отборов;

 D_{per} – расход пара на регенерацию;

 D_{κ} – суммарный расход пара в конденсатор турбин.

При этом в случае наличия встроенных пучков конденсатора распределение расчетного суммарного расхода пара между основным и встроенным пучками конденсатора осуществляется пропорционально площадям их поверхностей.

5.8.4. Для турбин, находящихся согласно предварительному графику в плановом ремонте во всех сутках соответствующего расчетного периода, при наличии конденсатора расход пара в голову (конденсатор) турбины принимается исходя из прогноза работы данной турбины в конденсационном режиме с учетом расхода пара на регенерацию, а для турбин с противодавлением расход пара в голову и отпуск пара принимаются равными нулю.

5.8.5. Расход пара на регенерацию принимается согласно имеющимся нормативным энергетическим характеристикам оборудования. В целях упрощения расчетов (в процессе расчетов может меняться допустимый расход пара в голову турбины, а, следовательно, и расход пара на регенерацию) данная величина может быть принята в процентах от расчетного расхода в голову турбины D_0 .

В случае задания величины расхода пара на регенерацию в процентах от D_0 необходимо ее подтверждение обосновывающими расчетами, проведенными в соответствии с нормативными энергетическими характеристиками при работе всех элементов системы регенеративного подогрева.

Указанная процентная доля должна оставаться неизменной в дальнейшем процессе расчетов ограничений по различным причинам вне зависимости от результирующих изменений допустимых расходов пара в голову турбины.

5.8.6. При определении максимально допустимого расхода пара в голову руководствоваться соответствующими необходимо энергетическими характеристиками турбоагрегатов. При этом, для турбин типа «П» и «ПТ» данная величина определяется в точке пересечения линии, соответствующей уровню загрузки производственного отбора, с правой границей зоны естественного повышения давления камере производственного отбора технической (3a исключением случаев невозможности работы в указанной зоне, обоснованных соответствующими документами, например, заключениями экспертных организаций о состоянии паропроводов, особенностями схемы снабжения потребителей пара и пр.), а для турбин типа «Т» – при максимальной технически возможной мощности, достижимой при соответствующем давлении в камере теплофикационного отбора (работа по электрическому графику).

При этом электрическая нагрузка определяется по диаграммам режимов и должна соответствовать максимально допустимому расходу пара в голову турбины.

Величина давления в камере теплофикационного отбора должна быть подтверждена обосновывающими расчетами в зависимости от температур прямой и обратной сетевой воды с использованием нормативных характеристик сетевых подогревателей. При этом не должны учитываться потери давления в трубопроводах от камеры отбора до сетевого подогревателя.

В случае отсутствия обосновывающих расчетов величина давления в камере теплофикационного отбора должна быть выбрана из условия обеспечения при прочих равных условиях максимальной технически возможной мощности.

5.8.7. При необходимости учета систематического отклонения температуры обратной сетевой воды от величины, определяемой диспетчерским графиком теплосети, что подтверждается фактическими значениями за аналогичные

месяцы последних трех лет, необходимо на основании температуре воздуха и фактическом среднесуточной среднесуточном отклонении температуры обратной сетевой воды зa каждые аналогичных месяцев за последние 3 года построить график зависимости фактического отклонения температуры воды от температуры наружного воздуха (путем построения линии тренда для области фактических точек), по которому при заданной расчетной температуре наружного воздуха можно определить расчетное отклонение температуры обратной сетевой воды.

- 5.9. Фактические эксплуатационные показатели работы основного и вспомогательного оборудования (например, недоохлаждение градирен, повышение температурных напоров конденсаторов, сетевых подогревателей) должны быть учтены в имеющейся на электростанции нормативно-технической документации (далее НТД). Дополнительные данные и поправки, не учтенные в НТД, в расчетах к учету не принимаются. Производительность и допустимое количество работающих циркуляционных насосов должно определяться согласно характеристикам параллельной работы циркуляционных насосов и гидравлической характеристике сети.
- 5.10. Ограничения установленной мощности, связанные с необходимостью соблюдения требований экологического характера, учитываются в расчетах в качестве исходных данных при условии представления следующих документов:
 - 5.10.1. Для электростанций, имеющих ограничения по охране водных объектов:
 - 5.10.1.1. Лицензия на водопользование с соответствующими приложениями, содержащими следующие данные и документы:
 - Сведения о водном объекте;
 - Сведения о водопользователе и осуществляемой водохозяйственной деятельности;
 - Разрешение на сброс загрязняющих веществ в водные объекты;
 - План размещения водозабора и выпуска сточных вод;
 - Условия пользования водным объектом;
 - План природоохранных мероприятий.
 - 5.10.1.2. Программа ведения регулярных наблюдений за водным объектом и его водоохраной зоной, содержащая информацию о местах размещения пунктов контроля соблюдения температурного режима, согласованных уполномоченными органами;
 - 5.10.2. Для электростанций, имеющих ограничения по охране воздушного бассейна:
 - 5.10.2.1. Заключение уполномоченных органов, осуществляющих технологический и экологический надзор, о величинах предельно допустимых выбросов загрязняющих веществ в атмосферу.
 - 5.11. Не учитываются ограничения мощности:
 - 5.11.1. Экологического характера, имеющие место при складывающихся неблагоприятных метеоусловиях (далее НМУ);

- 5.11.2. Связанные со сжиганием непроектного топлива (кроме случаев полного прекращения добычи проектного топлива в связи с истощением месторождений при одновременном отсутствии возможности сжигания мазута);
- 5.11.3. Из-за недостатка топлива или отсутствия финансовых средств на его приобретение;
- 5.11.4. Из-за наличия лимитов по объему сжигаемого газа на электростанции в следующих случаях:
 - указанные лимиты не обусловлены техническими причинами;
 - указанные лимиты распространяются на электростанцию или группу электростанций и обусловлены ограничением пропускной способности трубопроводов и газорегуляторных пунктов, однако на одной или нескольких электростанциях, входящих в данную группу, имеется возможность сжигания резервного топлива (уголь, мазут, торф и пр.), обеспечивающая отсутствие в течение расчетного подпериода ограничений по указанной причине;
- 5.11.5. Из-за кратковременного ухудшения эксплуатационного состояния оборудования в межремонтный период (например, занос поверхностей нагрева котлов, трубок конденсаторов и пр.);
- 5.11.6. Связанные с работой турбоагрегатов в режиме ухудшенного вакуума, в режиме трех- (и более) ступенчатого подогрева сетевой воды с целью повышения показателей экономичности оборудования, приводящей к появлению ограничений (снижению электрической мощности), кроме случаев, когда перевод в данный режим обусловлен технической необходимостью (особенности тепловой схемы, отсутствие возможности прогнозируемого теплопотребления обеспечения уровня других источников (отборов, $\Pi BK)$, что подтверждается наличием обосновывающих документов, заключений и расчетов;
- 5.11.7. Связанные с работой с полностью прикрытыми диафрагмами в целях повышения экономических показателей, а также в случае повышенного потребления тепла при наличии на электростанции градирен и возможности перевода тепловой нагрузки (или ее части) на ПВК;
- 5.11.8. Связанные с невостребованностью конденсационной мощности на ТЭЦ или с экономической нецелесообразностью выработки электроэнергии по конденсационному циклу в пределах имеющихся технических возможностей при уменьшении или отсутствии тепловых нагрузок;
- 5.11.9. Связанные с отпуском тепла из нерегулируемых отборов конденсационных энергоблоков при наличии возможности его обеспечения от других источников теплоснабжения электростанции, за исключением РОУ и быстродействующих редукционно-охлаждающих установок (далее БРОУ), подключенных к паропроводам свежего пара;
- 5.11.10. Связанные с освоением вновь вводимого оборудования (при нахождении оборудования в опытно-промышленной эксплуатации);

- 5.11.11. Неудовлетворительного состояния дымовых труб, градирен и других технологических сооружений, устранимых в процессе ремонтов, за исключением случаев, когда одновременно выполнены следующие условия:
 - факт изменения параметров и характеристик дымовых труб, градирен и других технологических сооружений, приводящий к снижению мощности, подтвержден результатами испытаний, проведенных экспертной организацией И оформленных соответствии 4.2 настоящих Методических требованиями П. указаний исключением параметров, определяемых нормативным ПО характеристикам, например, величин недоохлаждения градирен, температурных напоров конденсаторов, сетевых подогревателей и пр.);
 - в предстоящем календарном году не планируется ремонта соответствующих категории и объема работ, по результатам которого возможно устранение таких снижений;
 - представленный перечень мероприятий по устранению ограничений мощности работы, предусматривающие приведение содержит сооружений упомянутых технологических удовлетворительное планируемым соответствующие состояние сроки, ремонтам необходимой категории.
- 5.12. Определение объемов ограничений для газотурбинных установок (далее ГТУ) при заданной расчетной температуре наружного воздуха осуществляется по имеющимся на электростанции нормативным характеристикам, построенным при условии корректной маркировки установленной (номинальной) мощности ГТУ в соответствии с требованиями ГОСТ: зависимости электрической мощности от температуры наружного воздуха без учета поправок на остальные метеорологические факторы, а также с учетом объемов отпуска тепла внешним потребителям.
- 5.13. При определении объемов ограничений для парогазовых установок (далее ПГУ) должны соблюдаться следующие требования:
 - 5.13.1. Энергоблок ПГУ при определении объемов ограничений должен рассматриваться как одна неделимая единица оборудования.
 - 5.13.2. Суммарная величина ограничений, имеющих место как на паросиловой, так и на газотурбинной части, определяется в общем порядке в соответствии с требованиями, предъявляемыми настоящими Методическими указаниями к расчету ограничений на оборудовании ТЭС, с учетом имеющихся на электростанции нормативных характеристик ПГУ.

6. Порядок расчета и принципы учета ограничений АЭС

6.1. Расчет ограничений установленной мощности энергоблоков АЭС, связанных с работой по топливному циклу, проводится в соответствии с действующей в отрасли нормативно-технической документацией и внутренними документами ОАО «Концерн Энергоатом».

- 6.2. Ограничения установленной мощности энергоблоков АЭС, связанные с работой по топливному циклу, определяются в соответствии с графиком ремонтов основного энергетического оборудования и на период ремонта энергоблока принимаются равными нулю.
- 6.3. Порядок расчета и принципы учета ограничений установленной мощности энергоблоков АЭС, связанных с работой паросиловой части, соответствует п.п. 5.1-5.11 настоящих Методических указаний за исключением пунктов, имеющих отношение только к оборудованию и режимам работы ТЭС.

7. Условия проведения перемаркировки оборудования.

- 7.1. В случае нецелесообразности или отсутствия возможности устранения технических ограничений путем проведения соответствующих мероприятий в сроки, устанавливаемые настоящими Методическими указаниями, собственником оборудования должна быть произведена перемаркировка установленной мощности.
- 7.2. Если временные ограничения длительного действия обусловлены недостатком или отсутствием тепловых нагрузок (на турбинах типа «Р», на турбинах типа «П», «ПТ» при отсутствии производственного отбора и наличии ограничений по пропускной способности части среднего давления (далее ЧСД), повышенным потреблением тепла на предстоящий период (а также на ближайшие три года), то на соответствующий период планирования собственник оборудования имеет право провести перемаркировку установленной мощности в установленном порядке на соответствующую данному ограничению величину (МВт).

Если в течение 3 лет собственник оборудования прогнозирует изменение тепловых нагрузок, приводящее к снижению (устранению) ограничений по данным причинам, перемаркировка оборудования не проводится, однако, если по истечении данного периода на неперемаркированном оборудовании сохраняются данные ограничения, при осуществлении согласования на последующие периоды величины ограничений по данным причинам в объемах, соответствующих минимальному значению среднемесячных ограничений за последний год, согласовываться не будут.

- 7.3. Если временные ограничения длительного действия обусловлены причинами экологического характера (не устранимыми в определенные проводимыми мероприятиями сроки (не более трех лет) путем замены, модернизации или реконструкции очистных сооружений и устройств), то величины ограничений по данным причинам в этом случае на соответствующий период планирования согласовываться не будут, а собственник оборудования имеет право провести перемаркировку установленной мощности в установленном порядке на соответствующую данным ограничениям величину (МВт).
- 7.4. Если на предстоящий период (а также на ближайшие 3 года) временные ограничения сезонного действия на одной и той же группе оборудования имеют переходящий характер, то есть действие одного сезонного фактора заменяется действием другого сезонного фактора, что может быть обусловлено, в том числе, некорректно проведенной маркировкой установленной мощности оборудования, то

в этом случае собственник оборудования имеет право провести перемаркировку установленной мощности в установленном порядке на соответствующую данным ограничениям величину (МВт).

Если в течение 3 лет собственник оборудования прогнозирует изменение условий, приводящих к снижению (устранению) ограничений по, как минимум, одной из этих причин, перемаркировка установленной мощности оборудования не проводится, однако, если по истечении данного периода на неперемаркированном оборудовании сохраняются данные ограничения, при осуществлении согласования на последующие периоды величины ограничений по данным причинам в объемах, соответствующих минимальному значению среднемесячных ограничений за последний год (базовая величина), согласовываться не будут.

7.5. При наличии системных ограничений, связанных с недостаточной пропускной способностью прилегающих к электростанции электрических связей, в случаях, когда устранение таких ограничений не осуществимо силами и возможностями компании-собственника, перемаркировка оборудования не проводится.

8. Мероприятия по устранению ограничений установленной мощности

- 8.1. Обязательным условиям для согласования величин ограничений является наличие эффективных (эффективными считаются меры, приводящие к устранению согласовываемых объемов ограничений в срок, указанный в п. 8.4 настоящих Методических указаний) мероприятий по сокращению ограничений установленной мощности. В случае технической невозможности или экономической нецелесообразности проведения эффективных мероприятий в ОАО «СО ЕЭС» представляется аналитическая записка с соответствующими обоснованиями.
- 8.2. Перечень мероприятий по сокращению ограничений подлежит согласованию с ОАО «СО ЕЭС».
- 8.3. Ограничения установленной мощности, подлежащие устранению, фиксируются по состоянию на момент принятия ОАО «СО ЕЭС» решения о согласовании ограничений (как на этапе годового, так и на этапе месячного планирования с учетом уже заявленных ранее мероприятий).
- 8.4. Все ограничения, зафиксированные на дату, указанную в п. 8.3 настоящих Методических указаний должны быть устранены в установленный срок. Срок устранения ограничений установленной мощности на основании результатов анализа объемов предполагаемых работ согласовывает ОАО «СО ЕЭС».
- 8.5. Распределение объемов работ по годам периода устранения ограничений при проведении мероприятий, касающихся нескольких единиц оборудования, осуществляется равномерно. Начало проведения работ (а, по возможности, и окончание работ, что влечет за собой сокращение ограничений) по не менее чем одной единице оборудования должно присутствовать в любом году из входящих в установленный период устранения ограничений.
- 8.6. Форма представления перечня мероприятий по сокращению ограничений мощности приведена в приложении 5 к настоящим Методическим указаниям.

- 8.7. Указанная в п. 8.6 настоящих Методических указаний форма заполняется ежегодно при согласовании ограничений на предстоящий календарный год. При этом, в ней должны отражаться плановые мероприятия, подлежащие выполнению в течение периода, оставшегося до окончания срока, установленного согласно п. 8.4 настоящих Методических указаний.
- 8.8. Планируемые величины снижений ограничений определяются путем проведения прогнозных расчетов, исходя из условия приведения по результатам выполнения планируемых мероприятий оборудования в состояние, соответствующее его нормативным характеристикам. После окончания планируемых работ по результатам проведения натурных испытаний фактические объемы сокращения ограничений могут быть скорректированы.
- 8.9. Отчет о проведенных мероприятиях по сокращению и устранению ограничений установленной мощности является обязательным документом, определяющим, в том числе, величину согласовываемых ограничений.
- 8.10. Период контроля проведения мероприятий соответствует 12 календарным месяцам, предшествующим месяцу подачи пакета документов для согласования ограничений на предстоящий календарный год.
- 8.11. Форма представления отчета о проведенных мероприятиях по сокращению ограничений мощности приведена в приложении 6 к настоящим Методическим указаниям.
- 8.12. В случае проведения корректировок величин ограничений на этапе месячного планирования заполненная согласно приложению 6 к настоящим Методическим указаниям форма представляется в актуализированном виде, то есть должна содержать отчет о проведенных мероприятиях за период с первого месяца, не попавшего в отчетный период при осуществлении согласования ограничений на предстоящий год, по месяц, предшествующий месяцу подачи корректировок.
- 8.13. Примеры заполнения формы по приложениям 5 и 6 к настоящим Методическим указаниям приведены в приложениях 7.1-7.4 к настоящим Методическим указаниям.
- 8.14. В случае не выполнения мероприятий по сокращению ограничений установленной мощности или не соблюдения зафиксированных в перечне мероприятий сроков их проведения, величина согласовываемых ограничений по данным причинам даже при наличии подтверждающих документов и расчетов уменьшается по каждому месяцу на прогнозную величину, приведенную в заполненной по приложению 5 к настоящим Методическим указаниям форме, вплоть до момента окончания проведения данных работ.
- 8.15. При не выполнении распределенных по годам работ по сокращению ограничений по одной и той же причине, объемы величин ограничений, не подлежащих согласованию, суммируются арифметически. Таким образом, при невыполнении в течение согласованного ОАО «СО ЕЭС» срока проведения мероприятий по сокращению и устранению ограничений, на дальнейшие расчетные периоды ограничения по данной причине согласовываться не будут.

9. Определение величины ограничений установленной мощности для каждой энергоустановки и ГТПГ в целом.

- 9.1. Суммарная величина ограничений по ГТПГ в рассматриваемом подпериоде определяется как сумма ограничений и допустимых превышений максимальной технически возможной мощности над установленной каждой из энергоустановок, входящих в состав ГТПГ.
- 9.2. Суммарная величина ограничений мощности по каждой энергоустановке определяется как сумма собственных ограничений энергоустановки и долей общегрупповых (общестанционных) ограничений, приходящихся на данную установку.
- 9.3. Доли общегрупповых (общестанционных) ограничений, приходящиеся на каждую энергоустановку, определяются в соответствии с п. 5.4.2 настоящих Методических указаний на основании результатов расчетов распределения тепловых нагрузок между отборами турбин, РОУ и ПВК с использованием имеющихся диаграмм режимов (и другой нормативно-технической документации), а также результатов расчетов, выполняемых для определения величин ограничений по каждой из причин их вызывающих.
- 9.4. При наличии системных ограничений по группе оборудования (электростанции в целом) их определение и распределение между энергоустановками осуществляется ОАО «СО ЕЭС». При этом сама величина ограничений для каждой из энергоустановок по данной причине определяется в соответствии с п. 5.4.2 настоящих Методических указаний.
- 9.5. В случае если для входящей(их) в ГТПГ энергоустановки (нескольких энергоустановок) по результатам расчетов ограничений по всем возможным причинам:
 - максимальная технически возможная мощность превышает установленную мошность:
 - данная энергоустановка (несколько энергоустановок) входит в группу энергоустановок, объединенных общегрупповыми (общестанционными) ограничениями, по результатам расчетов которых и были определены величины упомянутых превышений;

величины указанных превышений учитываются при определении суммарной располагаемой мощности данной ГТПГ в объеме, не превышающем сумму ограничений мощности по тем же самым общегрупповым (общестанционным) причинам на оставшихся энергоустановках, входящих в подобную группу;

При заполнении форм приложений 8,9 к настоящим Методическим указаниям по энергоустановкам, на которых максимальная технически возможная мощность превышает установленную, указывается величина превышения со знаком «минус».

На основании приложений 8,9 к настоящим Методическим указаниям с учетом превышения максимальной технически возможной мощности над

установленной формируются суммарные объемы общегрупповых (общестанционных) ограничений, подлежащие перераспределению при осуществлении оперативного планирования

- 9.6. При оперативном планировании в случае нахождения энергоустановки (нескольких энергоустановок), имеющей (имеющих) долю в общегрупповых и (или) общестанционных ограничениях, в плановом (неплановом) останове (холодном резерве, вынужденном простое, плановом, аварийном или неотложном ремонтах), располагаемой мощности данной энергоустановки (нескольких энергоустановок), а также оставшихся в работе энергоустановок, объединенных (общестанционными) упомянутыми общегрупповыми ограничениями, определяется **учетом** упрощенного математического перераспределения относимых на данные единицы оборудования ограничений, имеющих статус общестанционных, подтверждено общегрупповых или если иное дополнительными расчетами с соответствующим пересчетом ограничений.
 - 9.6.1. В случае превышения суммарной установленной мощности, сниженной на величину собственных ограничений, таких энергоустановок, находящихся в плановом (неплановом) останове, над суммарной величиной общегрупповых или общестанционных ограничений:
 - Суммарная величина располагаемой мощности данных энергоустановок определяется как разница между вышеупомянутыми величинами, а распределение долей ограничений между ними осуществляется пропорционально их установленной электрической мощности.
 - Для энергоустановок, остающихся в работе, доля общегрупповых или общестанционных ограничений становится равна нулю.
 - 9.6.2. В случае если суммарная установленная мощность, сниженная на величину собственных ограничений, таких энергоустановок, находящихся в плановом (неплановом) останове, ниже суммарной величины общегрупповых или общестанционных ограничений:
 - Величина располагаемой мощности данных энергоустановок принимается равной нулю.
 - Оставшаяся доля общегрупповых или общестанционных ограничений относится на энергоустановки, объединенные такими ограничениями и оставшиеся в работе, и распределяется между ними пропорционально их установленной электрической мощности.

10. Порядок определения расчетных исходных метеорологических данных: относительной влажности наружного воздуха и скорости ветра.

10.1. Определение расчетной относительной влажности наружного воздуха 10.1.1. Относительная влажность φ — отношение парциального давления водяного пара (упругости водяного пара) e к его предельному значению E, выраженное в процентах.

10.1.2. Относительная влажность воздуха для любой задаваемой температуры наружного воздуха определяется расчетным путем по формуле:

 $\varphi = e/E \cdot 100\%$ (10.1), где

- $e\ u\ E$ упругость водяного пара и ее предельное значение при данной расчетной температуре соответственно.
- 10.1.3. Величина упругости водяного пара при расчетной температуре определяется расчетным путем. Для этого выполняются следующие действия:
 - 10.1.3.1. Из действующего издания СНиП «Строительная климатология» выбирается информация о среднемесячных величинах парциального давления (упругости) водяного пара и температурах наружного воздуха для рассматриваемого региона.
 - 10.1.3.2. Полученные данные наносятся на график зависимости упругости водяного пара от температуры наружного воздуха (пример в табл. 10.1 и на рис. 10.1) и для полученной группы точек проводится логарифмическая линия тренда, которая затем, при необходимости, линейно экстраполируется в область максимальных расчетных температур наружного воздуха.
 - 10.1.3.3. При заданной температуре наружного воздуха по построенному графику определяется соответствующая величина e.
- 10.1.4. Предельная величина упругости водяного пара при расчетной температуре определяется по данным таблицы 10.2.

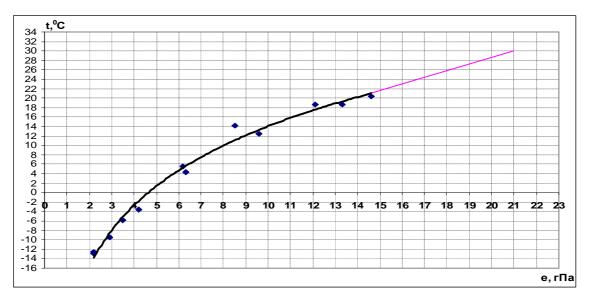


Рис. 10.1 Зависимость упругости водяного пара от температуры наружного воздуха.

Исходные данные Табл. 10.1

Параметр		II	III	IV	V	VI	VII	VIII	IX	Χ	ΧI	XII
Среднемес. темп. нар. возд., ⁰ С	-12,9	-12,5	-5,9	5,6	14,2	18,7	20,4	18,6	12,5	4,4	-3,5	-9,5
Среднемес. упруг. вод. пара., гПа	2,2	2,2	3,5	6,2	8,5	12,1	14,6	13,3	9,6	6,3	4,2	2,9

Предельные значения упругости водяного пара

Таб<u>л. 10.2</u>

Температура, °С Максимальная упругость водяного пара Е, гПа Температура, °С Температура (десятые доли градуса), °С 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 5 8,7 8,8 8,8 8,9 9,0 9,0 9,1 9,2 9,2 6 9,4 9,4 9,5 9,5 9,6 9,7 9,7 9,8 9,9 7 10,0 10,1 10,2 10,2 10,3 10,4 10,4 10,5 10,6 8 10,7 10,8 10,9 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0 11 13,1 13,2 13,3 13,4 13,5 13,6 13,7										
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 5 8,7 8,8 8,8 8,9 9,0 9,0 9,1 9,2 9,2 6 9,4 9,4 9,5 9,5 9,6 9,7 9,7 9,8 9,9 7 10,0 10,1 10,2 10,2 10,3 10,4 10,4 10,5 10,6 8 10,7 10,8 10,9 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0										
5 8,7 8,8 8,8 8,9 9,0 9,0 9,1 9,2 9,2 6 9,4 9,4 9,5 9,5 9,6 9,7 9,7 9,8 9,9 7 10,0 10,1 10,2 10,2 10,3 10,4 10,4 10,5 10,6 8 10,7 10,8 10,9 11,0 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0										
6 9,4 9,4 9,5 9,5 9,6 9,7 9,7 9,8 9,9 7 10,0 10,1 10,2 10,2 10,3 10,4 10,4 10,5 10,6 8 10,7 10,8 10,9 11,0 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0	0,9									
7 10,0 10,1 10,2 10,2 10,3 10,4 10,4 10,5 10,6 8 10,7 10,8 10,9 11,0 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0	9,3									
8 10,7 10,8 10,9 11,0 11,0 11,1 11,2 11,2 11,3 9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0	10,0									
9 11,5 11,6 11,6 11,7 11,8 11,9 12,0 12,0 12,1 10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0	10,6									
10 12,3 12,4 12,4 12,5 12,6 12,7 12,8 12,9 13,0	11,4									
	12,2									
11 13,1 13,2 13,3 13,4 13,5 13,6 13,7 13,8 13,8	13,0									
	13,9									
12 14,0 14,1 14,2 14,3 14,4 14,5 14,6 14,7 14,8	14,9									
13 15,0 15,1 15,2 15,3 15,4 15,5 15,6 15,7 15,8	15,9									
14 16,0 16,1 16,2 16,3 16,4 16,5 16,6 16,7 16,8	17,0									
15 17,1 17,2 17,3 17,4 17,5 17,6 17,7 17,8 18,0	18,1									
16 18,2 18,3 18,4 18,5 18,7 18,8 18,9 19,0 19,1	19,3									
17 19,4 19,5 19,6 19,8 19,9 20,0 20,1 20,3 20,4	20,5									
18 20,6 20,8 20,9 21,0 21,2 21,3 21,4 21,6 21,7	21,8									
19 22,0 22,1 22,3 22,4 22,5 22,7 22,8 23,0 23,1	23,2									
20 23,4 23,5 23,7 23,8 24,0 24,1 24,3 24,4 24,6	24,7									
21 24,9 25,0 25,2 25,4 25,5 25,7 25,8 26,0 26,1	26,3									
22 26,5 26,6 26,8 26,9 27,1 27,3 27,4 27,6 27,8	27,9									
23 28,1 28,3 28,5 28,6 28,8 29,0 29,2 29,3 29,5	29,7									
24 29,9 30,0 30,2 30,4 30,6 30,8 31,0 31,1 31,3	31,5									
25 31,7 31,9 32,1 32,3 32,5 32,7 32,9 33,0 33,2	33,4									
26 33,6 33,8 34,0 34,2 34,4 34,6 34,9 35,1 35,3	35,5									
27 35,7 35,9 36,1 36,3 36,5 36,8 37,0 37,2 37,4	37,6									
28 37,8 38,1 38,3 38,5 38,7 39,0 39,2 39,4 39,6	39,9									
29 40,1 40,3 40,6 40,8 41,0 41,3 41,5 41,8 42,0	42,2									
30 42,5 42,7 43,0 43,2 43,5 43,7 44,0 44,2 44,5	44,7									
31 45,0 45,2 45,5 45,8 46,0 46,3 46,5 46,8 47,1	47,3									
32 47,6 47,9 48,1 48,4 48,7 49,0 49,2 49,5 49,8	50,1									
33 50,4 50,6 50,9 51,2 51,5 51,8 52,1 52,4 52,7	53,0									
34 53,3 53,6 53,8 54,2 54,5 54,8 55,1 55,4 55,7	56,0									
35 56,3 56,6 56,9 57,2 57,6 57,9 58,2 58,5 58,8	59,2									
36 59,5 59,8 60,1 60,5 60,8 61,1 61,5 61,8 62,2	62,5									
37 62,8 63,2 63,5 63,9 64,2 64,6 64,9 65,3 65,6	66,0									
38 66,3 66,7 67,0 67,4 67,8 68,2 68,5 68,9 69,3	69,6									
39 70,0 70,4 70,8 71,1 71,5 71,9 72,3 72,7 73,1	73,5									
40 73,6 74,2 74,6 75,0 75,4 75,8 76,2 76,6 77,1	77,5									

10.2. Определение скорости ветра на высоте 2 метров над поверхностью земли (воды).

10.2.1. Расчетная скорость ветра может быть приближенно определена по формуле:

$$V_{\rm h=2M} = k \cdot V_{\rm h\phi} \tag{10.2},$$

где $V_{\rm h\phi}$ — среднемесячные значения скорости ветра на высоте флюгера, принимаемые по данным действующих на территории России справочников по климату или по официальным справочным данным от метеослужб.

- k- коэффициент приведения скорости ветра на высоте флюгера к высоте 2 метра над поверхностью земли (воды).
- 10.2.2. В случае если высота флюгера указывается в действующих справочниках по климату или в официальных справочных данных от метеослужб диапазоном значений, в качестве расчетной высоты упрощенно принимается среднеарифметическая величина из приводимых высот.
- 10.3. Коэффициенты приведения к определяются по универсальным зависимостям, приведенным на рис. 10.2 и 10.3.

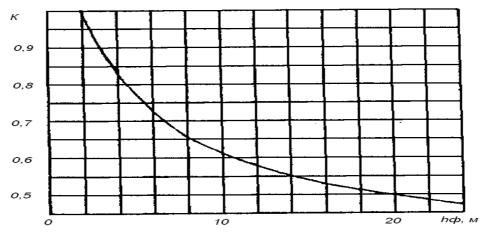


Рис. 10.2. Приведение к скорости ветра на высоте 2 м. от поверхности земли

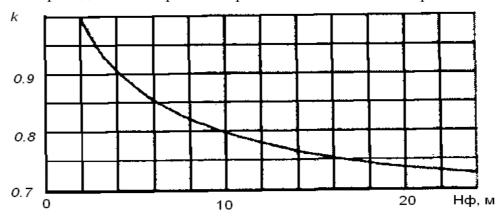


Рис. 10.3. Приведение к скорости ветра на высоте 2 м. от поверхности воды

11. Расчет ограничений, связанных с обеспеченностью электрической мощности системами технического водоснабжения.

- 11.1. Электростанции с циркуляционными системами водоснабжения.
 - 11.1.1. Алгоритм расчета для электростанций с градирнями (брызгальными бассейнами).

- 11.1.1.1 Расчет проводится графоаналитическим методом только для подпериодов с положительной расчетной средней температурой наружного воздуха, определяемой как среднеарифметическое значение расчетных среднесуточных температур за все сутки соответствующего подпериода.
- 11.1.1.2. Для электростанций с турбинами типа «ПТ», «П» и «Т» расчет проводится на полный состав работающего оборудования при расчетных тепловых нагрузках отборов, расходах пара в голову турбин исходных электрических конденсатор, также нагрузках, приведенных форме приложению 4 настоящим согласно Методическим указаниям.
- 11.1.1.3. Для электростанций с турбинами типа «К» расчет проводится при расходах пара в голову турбины и в конденсатор, приведенных в форме согласно приложению 4 к настоящим Методическим указаниям.
- 11.1.1.4. Расчетный расход воды в элементах циркуляционной системы $W(\text{м}^3/\text{ч})$ принимается на основании следующих значений:
 - Суммарный номинальный расход воды через конденсаторы турбин;
 - Суммарная производительность градирен (брызгальных бассейнов) с учетом схемы возврата охлаждающей воды после масло- и газоохладителей (далее МГО):
 - Фактическая, при наличии результатов комплексных испытаний, подтверждающих данное эксплуатационное состояние. При этом, в обязательном порядке должна использоваться перестроенная по результатам данных испытаний эксплуатационная характеристика (номограмма), то есть фактическое состояние должно быть зафиксировано в нормативно-технической документации электростанции;
 - Проектное, если градирни находятся в удовлетворительном состоянии, либо если фактическое состояние не зафиксировано в нормативно-технической документации. При этом, в обязательном порядке расчет проводится в соответствии с паспортными данными градирен и нормативными характеристиками (для брызгальных бассейнов по контрольной номограмме согласно [6]);
 - Суммарная производительность циркуляционных насосов с учетом схемы возврата охлаждающей воды после МГО;

Фактическая суммарная производительность циркуляционных насосов определяется в соответствии с утвержденной нормативно-технической документацией – характеристиками параллельной работы циркуляционных насосов и гидравлической характеристикой сети (учитывающими, в том числе, и ограничения по пропускной

способности трубопроводов и ограничения по допустимому количеству работающих насосов), построенной по результатам гидравлических испытаний сроком давности проведения не более 5 лет, проведенных организацией, имеющей лицензию на осуществление такого рода деятельности.

При отсутствии результатов гидравлических испытаний, соответствующих предъявляемым требованиям, а также при отсутствии характеристик параллельной работы циркуляционных насосов суммарная производительность определяется как сумма номинальных производительностей каждого из насосов согласно паспортным данным.

- В частном случае при наличии ограничений по расходу добавочной воды, подтвержденных соответствующими документами, максимальный расчетный расход воды в циркуляционной системе определяется с учетом потерь воды в градирнях на испарение и капельный унос исходя из обеспечения материального баланса в циркуляционной системе. При этом в обязательном порядке должны быть представлены краткосрочные (не более двух лет) мероприятия по сокращению потерь воды.
- 11.1.1.5. Распределение гидравлической нагрузки (определенного расчетного расхода воды) между гидроохладителями может осуществляться двумя способами:
 - На основании результатов натурных испытаний сроком давности проведения не более 5 лет, проведенных организацией, имеющей лицензию на осуществление такого рода деятельности, с учетом особенности схемы технического водоснабжения и расположения (удаленности) конденсаторов от централизованной насосной станции (далее ЦНС) и градирен в сети;
 - Пропорционально номинальной проектной производительности в случае отсутствия таких испытаний:

$$W_{i} = (W_{i}^{\Pi} / \sum_{i=1}^{n} W_{i}^{\Pi}) \cdot W$$
 (11.1)

где W – расчетный расход воды в цирксистеме, M^3/V^3 ;

 $W_{i}^{\ \ n}$ — проектный расход воды через гидроохладитель, м³/ч;

 W_i – расчетный расход воды через гидроохладитель, м³/ч;

- 11.1.1.6. Распределение расчетного расхода охлаждающей воды между конденсаторами может осуществляться следующим образом:
 - Для схем циркуляционного водоснабжения с поперечными связями (при наличии ЦНС) – пропорционально номинальному расходу воды через конденсаторы турбин согласно паспортным данным;

$$W_{kj} = (W_{kj}^{n} / \sum_{j=1}^{n} W_{kj}^{n}) \cdot W$$
 (11.2)

где W_{kj}^{n} — номинальный расход охлаждающей воды через конденсатор турбины, м³/ч;

 W_{kj} – расчетный расход охлаждающей воды через конденсатор турбины, м³/ч;

- Для блочных схем циркуляционного водоснабжения пропорционально подаче циркуляционных насосов;
- 11.1.1.7. Определяется тепловая нагрузка циркуляционной системы по формуле:

$$U_0 = \sum_{j=1}^{n} (D_{kj} \cdot \Delta h_j), \qquad \text{Мкал/ч}$$
 (11.3)

где $D_{\kappa j}$ – расход пара в конденсатор турбины, т/ч;

 Δh_j — разность теплосодержаний отработавшего пара и конденсата, ккал/кг, определяемая по справочным данным (таблицы свойств воды и водяного пара, h-s диаграммы) при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины, ккал/кг.

11.1.1.8. Определяются удельная тепловая нагрузка циркуляционной системы и средневзвешенный перепад температур воды при охлаждении в гидроохладителях по формулам 11.4 и 11.5 соответственно:

$$u_{cp} = \frac{U_0}{\sum_{i=1}^{m} F_i},$$
 Мкал/(м²,ч) (11.4)

$$\Delta t^{ce} = \frac{u_{cp} \cdot \sum_{j=1}^{m} F_i}{g \cdot C \cdot W}, \qquad {}^{0}C \qquad (11.5)$$

где F_i – площадь орошения градирни (общая площадь брызгального бассейна), M^2 ;

 γ – удельный вес нагретой воды при ее расчетной температуре, кг/м³; C – удельная теплоемкость воды, ккал/(кг.°С);

Для упрощения произведение $g \cdot C$ принимается равным 1, при этом величина u_{cp} подставляется в формулу 11.5 с размерностью Мкал/(м²-ч).

11.1.1.9. Задается несколько произвольных значений температуры наружного воздуха с шагом, например, 5^{0} С в диапазоне от 0^{0} С до величины температуры, превышающей максимальную расчетную температуру наружного воздуха самого жаркого месяца.

Для задаваемых значений температур проводится расчет относительной влажности наружного воздуха, и, кроме того, определяется величина скорости ветра на высоте 2 метра от поверхности земли согласно положениям главы 10 Методических указаний.

11.1.1.10. Для электростанций, имеющих в составе одинаковые по типу и параметрам градирни (брызгальные бассейны), по рассчитанной

согласно п. 11.1.1.8 настоящих Методических указаний величине удельных тепловых нагрузок для принятых в п 11.1.1.9 настоящих Методических указаний температур и расчетных значений влажности по номограммам (в качестве источников могут служить: нормативноэлектростанции, [7], техническая документация [2], соответствующих типов градирен (брызгального бассейна) определяются соответствующие значения температуры воды на выходе из градирен t_{2i} (0 C). Аналогичным образом находятся при тех же самых величинах температур и влажности значения t_{2i} для нескольких произвольных величин удельных тепловых нагрузок, определенной в п. 11.1.1.8 настоящих Методических указаний, с шагом, например, $10 \text{ Мкал/(м}^2 \cdot \text{ч})$.

11.1.1.1 Алгоритм определения величины t_{2i} состоит в следующем: – Для схемы с одинаковыми по типу и параметрам градирнями:

Для заданных значений температуры наружного воздуха, относительной влажности воздуха и величины произведения плотности орошения q (${\rm m}^3/{\rm m}^2*{\rm q}$) на средневзвешенный перепад температур Δt (${}^0{\rm C}$), численно равного величине удельных тепловых нагрузок $U_{\rm cp}$, по соответствующей для данного типа градирен номограмме определяется величина температуры охлаждающей воды на выходе из градирни (Puc. 11.1a).

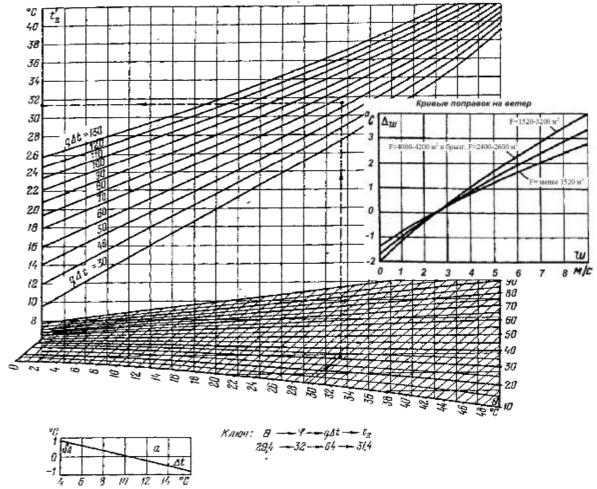


Рис. 11.1а. Пример работы с номограммой градирни.

Полученная величина корректируется с учетом поправок путем их суммирования (с соответствующим знаком) с температурой охлаждающей воды на выходе из градирни. При этом учитываются только поправки на скорость ветра, а также на расчетный средневзвешенный перепад температур воды при охлаждении в гидроохладителях, определяемые по прилагаемым к номограммам кривым.

В случае если расчетная величина $U_{\rm cp}$ оказалась выше максимальной по номограмме величины произведения qDt, необходимо последовательно уменьшать паровые нагрузки на конденсаторы до тех пор, пока расчетная величина не окажется в рабочем поле номограммы. При этом еще до проведения расчетов появится некоторая величина ограничений по системе технического водоснабжения.

– Для схемы с различными по типу и параметрам градирнями:

Алгоритм и пример определения величины t_{2i} для схемы с различными по типу и параметрам (расход воды через градирню, максимально допустимая средняя удельная тепловая нагрузка, площадь орошения) градирнями приведены в приложении 16 к настоящим Методическим указаниям.

– Для схемы с брызгальными бассейнами [6]:

Для заданных значений температуры наружного воздуха, относительной влажности воздуха, плотности орошения q ($\text{м}^3/\text{m}^2*\text{ч}$), определяемой как отношение часового расхода воды к общей площади брызгального бассейна, ограниченного радиусом разбрызгивания крайних сопел, средневзвешенного перепада температур Δt (0 C), численно равного величине удельных тепловых нагрузок $U_{\text{ср}}$, по номограмме для брызгального бассейна определяется величина температуры охлаждающей воды на выходе из брызгального бассейна.

Алгоритм теплового расчета брызгального бассейна приведен в [6] (п. 7.2.4).

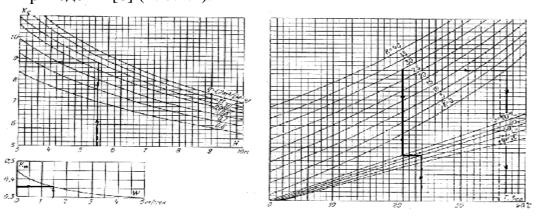


Рис. 11.1б. Пример работы с номограммой для брызгального бассейна (частный случай).

11.1.1.12. По определенным в п.п. 11.1.1.10-11.1.1.11 настоящих Методических указаний для каждой из градирен (брызгальных бассейнов) значениям температуры воды на выходе из градирни $t_{2i}\,$ для каждой величины удельных тепловых нагрузок И сочетания метеорологических параметров определяется средневзвешенная температура воды после гидроохладителей.

$$t_2^{\text{cB}} = \sum (t_{2i}W_i) / W , {}^{0}C$$
 (11.6)

- 11.1.1.13. Учет дополнительных влияющих факторов (отбор воды для технического водоснабжения МГО, учет параметров добавочной воды и пр.) для упрощения расчетов осуществляется следующим образом:
 - При схеме технического водоснабжения МГО с возвратом воды на всас циркуляционных насосов, в виду незначительности воздействия температуры возвращаемой воды на общую температуру воды на входе в конденсаторы, учитывается только величина расхода воды, что актуально в случаях, когда основным фактором, ограничивающим максимальный расчетный расход воды в цирксистеме, является недостаточная производительность циркуляционных насосов.
 - Величина расхода воды на МГО определяется согласно паспортным характеристикам оборудования и, в виду не учета температурного воздействия, соответствует номинальному значению. Расход воды на МГО турбин с противодавлением, газовых турбин (то есть турбин, не учитываемых в расчете обеспеченности мощности системами технического водоснабжения) также должен включаться в суммарную величину расхода воды. При этом для турбин типа Р, имеющих в расчетном подпериоде ограничения в размере полной установленной мощности в связи с отсутствием тепловых нагрузок, величина расхода воды на МГО не учитывается, а при наличии тепловых нагрузок расход принимается с учетом величины этих нагрузок. Кроме того, не должен учитываться расход находящиеся в резерве теплообменники.
 - При схеме технического водоснабжения МГО с возвратом воды перед градирнями (брызгальными бассейнами), когда прошедшая МГО вода поступает в напорные водоводы и охлаждается в гидроохладителях, учет температурного воздействия также не производится, а расход воды через гидроохладители равен сумме расходов воды через конденсаторы турбин и расхода воды на МГО).
 - Влияние температуры подпиточной (добавочной) воды на температуру воды в цирксистеме для упрощения расчетов не учитывается (кроме случаев, когда на электростанции имеется дефицит добавочной воды).

- 11.1.1.14. Полученные в п. 11.1.1.12 настоящих Методических указаний значения заносятся в таблицу, на основании которой при фиксированных значениях температуры наружного воздуха на поле диаграммы наносятся значения $U_{\rm cp}$ и соответствующие им значения t_2^{ce} , то есть осуществляется построение зависимости $t_2^{\rm ce} = f(u_{\rm cp}, \theta)$, состоящей из изолиний постоянных температур.
- 11.1.1.15. Целью дальнейшего расчета является определение максимально допустимых значений температуры охлаждающей воды по каждому турбоагрегату, при превышении которых на турбоагрегатах появляются ограничения паровой нагрузки и, соответственно, электрической мощности.

Проверка осуществляется по следующим критериям:

- по условиям предельно допустимого давления отработавшего пара в конденсаторах турбин $p_2 = 12$ кПа (0,12 кгс/см²), t_{np} " = 49,1°C (данные параметры установлены для большинства турбин). Также возможны и другие ограничивающие значения давлений отработавшего пара (например, для турбоагрегатов среднего давления, с ухудшенным вакуумом и др.). В частных случаях, в зависимости от схемы, возможен критерий по максимально допустимому значению температуры охлаждающей воды по техническим условиям работы фильтров БОУ t_2 = 40,0 °C.
- по техническим условиям эксплуатации МГО $t_2^{\text{св}} \le 33\,^{\circ}\text{C}$. Данное условие не учитывается в случаях, когда охлаждение МГО производится от постороннего источника охлаждающей воды.
- 11.1.1.16. Алгоритм определения предельных значений (построения линии ограничений) по условиям достижения предельно допустимого давления отработавшего пара в конденсаторах турбин и эксплуатации МГО состоит в следующем:

Задаемся несколькими произвольными значениями температуры воды перед конденсаторами $t_2^{\it cb}$.

Для каждой турбины при каждом задаваемом значении t_2^{ce} определяем температуру насыщенного пара в конденсаторе по формуле:

$$t''_{H} = t_{2}^{\text{CB}} + \Delta t_{\text{K}j}^{\text{p}} + \delta t_{j}^{\text{p}}, \, ^{\circ}\text{C}$$
 (11.7)

В формуле (11.7):

 $\Delta t^p_{\ kj}$ – нагрев воды в конденсаторе турбины, определяемый по формуле:

$$\Delta t_{kj}^{\delta} = \frac{(D_{kj}^{p} \cdot \Delta h_{j})}{W_{kj}}, \quad ^{\circ}C$$
 (11.8)

где D^p_{kj} – расчетный расход пара в конденсатор турбины согласно п.п. 11.1.1.2 и 11.1.1.3 настоящих Методических указаний (тонн/ч);

 W_{kj} — расход охлаждающей воды в конденсатор, определенный в п. 11.1.1.6 настоящих Методических указаний (м³/ч);

 Δh_j — разность теплосодержаний отработавшего пара и конденсата при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины, ккал/кг.

 δt^p_i – температурный напор конденсатора, °С.

Температурный напор конденсатора определяется по характеристикам конденсатора (паспортным заводским, либо действующей нормативно-технической документации электростанции). Дополнительные поправки на фактическое состояние конденсатора, не учтенные в имеющейся на электростанции нормативно-технической документации, в расчете учитываться не должны.

Пример работы с характеристикой конденсатора представлен на рис. 11.2.

Зависимость температурного напора от расхода и температуры охлаждающей воды конденсатора

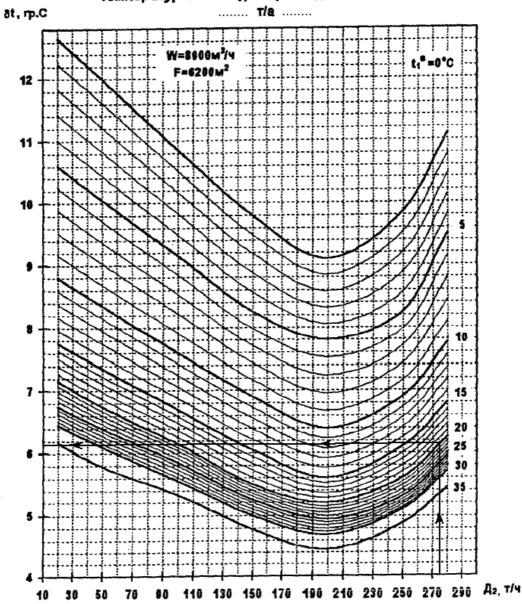


Рис. 11.2. Пример определения температурного напора по характеристике конденсатора.

Каждый конденсатор представлен набором характеристик, построенных при различных значениях расчетного расхода воды через конденсатор и площадях поверхности охлаждения.

Для определения температурных напоров конденсаторов необходимо использовать характеристику, построенную для соответствующей площади поверхности и расхода воды, наиболее приближенного арифметически к расчетному расходу воды W_{kj} , полученному в п. 11.1.1.6 настоящих Методических указаний.

После выбора характеристики по каждой турбине на основании имеющейся расчетной величины расхода пара в конденсатор для каждого из задаваемых значений $t_2^{\ cs}$ определяется температурный напор конденсатора.

По полученным по формуле (11.7) значениям температуры насыщения строится график зависимости $t''_{\rm H} = f(t_2^{\rm cB})$, на который также наносится граничная линия, соответствующая величине $t_{\rm H}{}'' = t_{np}{}'' = 49,1{}^{\circ}{\rm C}$ (или другой ограничивающей величине).

По графику определяем для каждой турбины в точке пересечения линии зависимости $t_{\rm H}^{"}=f(t_2^{\rm cB})$ с граничной линией (49,1°C или другая величина) значения $t_2^{\rm c6}$, которые являются для каждой турбины граничными точками, указывающими на то, что при превышении температуры охлаждающей воды на входе в конденсатор относительно этой величины $t_2^{\rm c6}$ необходимо снижать расход пара в конденсатор, а соответственно, при заданных тепловых нагрузках, и расход свежего пара в голову турбины, что приведет к соответствующему снижению электрической мощности (появлению ограничений). По новым расчетным значениям $t_2^{\rm c6}$ (расчетными значениями $t_2^{\rm c6}$ для каждой из турбин далее являются полученные точки перегиба для всех турбин и точка $t_2^{\rm c6}$ =33°C) для каждой турбины осуществляется расчет по формуле (11.7) новых значений $t_{\rm H}$ ". Кроме того, для каждой турбины определяются значения $t_{\rm H}$, соответствующие $t_2^{\rm c6}$ =33°C (по условиям эксплуатации МГО).

Для каждой турбины по полученным значениям t_2^{ce} (расчетными значениями t_2^{ce} для каждой из турбин далее являются полученные точки перегиба для всех турбин и точка $t_2^{ce} = 33^{0}$ С), t_{H}^{e} (включая величину t_{H}^{e} , соответствующую $t_2^{ce} = 33^{0}$ С) определяются допустимые величины расходов пара в конденсатор путем расчета коэффициентов снижения паровой нагрузки конденсатора по формуле:

$$c_{j} = \frac{t_{np}^{"} - t_{2}^{c6}}{t_{u}^{"} - t_{2}^{c6}} , \qquad (11.9)$$

где t_{np} " = 49,1°С (или другой ограничивающей величине).

По полученным коэффициентам определяем допустимый расход пара в конденсатор каждой из турбин, причем, при коэффициентах $c_i \ge 1$, $D_{kj} = D^p_{kj}$. Поскольку принимавшиеся в качестве

исходных данных величины D^p_{kj} (а, следовательно, расходы в голову турбин и электрическая нагрузка) соответствовали максимальным технически возможным значениям, электрическая нагрузка может превышать величину установленной мощности для турбин типа «ПТ» и «Т»).

При коэффициентах c_j <1 величины допустимых расходов пара в конденсатор определяются по формуле:

$$D_{\kappa j} = \chi_{j} D_{\kappa j}^{p}$$
, TOHH/4 (11.10)

Для соответствующих значений t_2^{c6} по полученным значениям D_{kj} определяются значения удельной тепловой нагрузки гидроохладителей по формуле:

$$u_{cp}^{i} = (\sum D_{kj} \cdot \Delta h_{j}) / \sum F_{i},$$
 Мкал/(м²,ч) (11.11)

Полученные по формуле 11.11 значения u^{i}_{cp} и соответствующие им значения t_2^{cs} (включая t_2^{cs} =33°C) откладываются на ранее построенном графике зависимости $t_2^{cs} = f(u_{cp}, \theta)$.

- 11.1.1.17. По графику методом интерполяции определяются величины температур наружного воздуха, проходящие через каждую точку перегиба.
- 11.1.1.18. В случае, если в расчетном подпериоде расчетная температура наружного воздуха выше максимальной из температур, полученных по графику в п. 11.1.1.17 настоящих Методических указаний, необходимо определить дополнительные точки.

Для этого на графике проводится линия $t_2^{ce} = 33^{\circ}$ С и определяются значения u^i_{cp} , соответствующие точкам пересечения данной линии с изолиниями температур наружного воздуха.

Количество дополнительных точек равно числу точек пересечения изолиний температур с линией $t_2^{ce} = 33^{0}$ С, находящихся на данной линии левее температуры в точке перегиба при $t_2^{ce} = 33^{0}$ С, и правее точки пересечения с этой линией первой изолинии температуры, превышающей расчетное значение температуры наружного воздуха.

При этом величина допустимого расхода пара в конденсатор для каждой из таких точек определяется по формуле:

$$D_{\kappa j} = \left(\frac{u_{cp}^{i}}{u_{cp}^{ozp}}\right) \cdot D_{kj}^{ozp}, \qquad \text{тонн/ч}$$
 (11.12)

где u_{cp}^{i} — величина удельной тепловой нагрузки, определяемая графически в каждой из точек пересечения;

 u_{cp}^{ozp} и D_{kj}^{ozp} — величина удельной тепловой нагрузки и допустимый расход пара в конденсатор, определенные для каждой турбины в точке пересечения линии ограничения с линией $t_2^{ce} = 33^{\circ}$ C.

11.1.1.19. По каждой турбине для всех полученных значений D_{kj} определяются величины расходов пара в голову турбин по формуле:

$$D_{0j} = \frac{D_{kj} + D_{Tj} + D_{\Pi j}}{1 - k_{pec}}, \quad \text{тонн/ч}$$
 (11.13)

где D_{Tj} и $D_{\Pi j}$ – соответственно нагрузки производственных и отопительных отборов согласно прогнозу распределения тепловых нагрузок;

 k_{pee} — коэффициент, отражающий долю расхода пара на регенерацию от общего расхода свежего пара в голову турбины, определяемый в соответствии с п. 5.8.5 настоящих Методических указаний.

Для упрощения осуществления обратного перехода от расхода пара в конденсатор к расходу пара в голову турбины во избежание возможного итерационного процесса при работе с нормативными характеристиками рекомендуется использовать приведенную в п. 5.8.5 настоящих Методических указаний фиксированную величину доли расхода пара на регенерацию. Однако, если при осуществлении распределения тепловых нагрузок между отборами, РОУ и ПВК, учет расхода пара на регенерацию проводился с использованием нормативных характеристик, учет расхода на регенерацию при обратном переходе также должен осуществляться с помощью характеристик.

В случае если в процессе расчета при каком-либо значении температуры $t_2^{c_6}$ для турбины типа «ПТ» при полученном сочетании величин расходов пара в голову турбины, в производственный и отопительный отборы выявляется технически нереализуемый режим, то есть максимально-допустимый расход пара в производственный отбор в точке, в которой определяется электрическая нагрузка в нижней части диаграммы, меньше заданной величины расхода пара в производственный отбор, в расчет необходимо внести соответствующие корректировки:

- Путем перераспределения расходов пара в теплофикационные и производственные отборы между турбинами при сохранении полученных значений $D_{\kappa j}$, то есть только за счет изменения расходов пара в голову турбин, если существует такая техническая возможность.

При этом проводится пересчет значений расходов пара в голову и электрической нагрузки для всех значений $t_2^{\ c_6}$ для каждой турбины, участвовавшей в таком перераспределении с сохранением расходов пара в конденсатор.

- В случае невозможности перераспределения расходов пара в теплофикационные и производственные отборы с сохранением расчетных значений $D_{\kappa j}$ для каждой турбины, путем изменения распределения тепловых нагрузок между отборами турбин и повторения расчета сначала.

– В случае получения аналогичной ситуации по результатам выполнения предыдущих действий, путем перевода части нагрузки на РОУ.

Величина перераспределения должна обеспечивать возвращение вышеупомянутого сочетания параметров в область реализуемых режимов.

- 11.1.1.20. Для полученных величин расходов пара в голову турбин при известных величинах отпуска пара из производственных и теплофикационных отборов по энергетическим характеристикам для каждой турбины определяем электрическую нагрузку.
- 11.1.1.21. При построении итоговых графиков учитываются поправки на изменение давления пара в конденсаторе DN_{P2} , определяемые по нормативным характеристикам конденсаторов, либо через величины температур насыщенного пара в конденсаторах, определенных с учетом снижения паровой нагрузки конденсатора при определенных значениях t_2^{c6} .
- 11.1.1.22. Для каждой турбины по известным величинам полученных методом интерполяции температур наружного воздуха в перегиба, также температур наружного воздуха дополнительных точках, и по соответствующим им рассчитанным в п.п. 11.1.1.18-11.1.1.21 настоящих Методических указаний величинам электрической мощности в общей системе координат зависимость электрической мощности от температуры наружного воздуха. На основании зависимостей для каждой турбины отдельно строится суммарная зависимость в целом по станции для данного расчетного подпериода.
- 11.1.1.23. Итоговая величина ограничений определяется графически путем наложения расчетной температуры наружного воздуха на итоговый график для расчетного подпериода. При этом на график наносится линия, соответствующая суммарной установленной мощности всех энергоустановок электростанции, учитываемых в расчете (турбоустановки которых имеют конденсаторы, подключенные к системе технического водоснабжения).
- 11.1.1.24. Итоговая величина ограничений определяется как разность между значением установленной мощности всех энергоустановок электростанции, учитываемых в расчете, и величиной электрической мощности по графику при расчетной температуре наружного воздуха.
- 11.1.1.25. В случае если полученная в расчетной точке располагаемая мощность выше номинальной (для машин типа «ПТ» и «Т»), ограничения принимаются равными нулю, и определяется соответствующая величина превышения над номинальной мощностью.
- 11.1.1.26. Выбор кода причины ограничения осуществляется исходя из анализа того, каким фактором обусловлен выбор максимального расчетного расхода воды в элементах цирксистемы. Если

количественные (расход воды) характеристики соответствуют номинальным параметрам оборудования, применяется код причины «Повышение температуры охлаждающей воды на входе в конденсаторы».

- 11.1.1.27. Величина ограничений, связанных с расчетом обеспеченности электрической мощности системой технического водоснабжения, равна величине, полученной по графику согласно п. 11.1.1.24 настоящих Методических указаний только в случае, когда электрическая мощность каждой энергоустановки, соответствующая расходам пара в голову и конденсатор турбины согласно исходным данным для расчета, не ee номинальной величины. В случае, если электрическая мощность по какой-либо энергоустановке меньше не связанным с работой номинальной ПО причинам, системы технического водоснабжения (расчет проведен на сниженные расходы пара в конденсатор), результирующая величина ограничений по обеспеченности электрической мощности системами технического водоснабжения определяется с учетом п. 5.4 настоящих Методических указаний.
- 11.1.1.28. Ограничения установленной мощности, связанные с работой систем технического водоснабжения, в целом по ГТПГ определяются путем суммирования соответствующих ограничений и допустимых величин превышений над номинальной мощностью по каждой относящейся к данной ГТПГ энергоустановке, определяемых при расчетной температуре наружного воздуха по графикам, построенным в п. 11.1.1.22 настоящих Методических указаний.

11.1.2. Алгоритм расчета для электростанций с прудами (водохранилищами) – охладителями.

- 11.1.2.1.Классификация водохранилищ-охладителей, принята в соответствии с рекомендациями ВНИИГ им. Б.Е. Веденеева по форме и схеме расположения водовыпускных и водозаборных сооружений [4]:
 - Водохранилища вытянутые узкие (рис.11.3), B/L< 0,2 (где В и L − соответственно ширина и длина водохранилища, км).
 - Схема а. С продольным движением потока. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища.
 - Схема б. С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема.
 - Схема в. С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, а водозаборное в средней части.

- Водохранилища вытянутые широкие, 0.2 < B/L < 0.5 (рис. 11.4).

Схема а. С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища.

Схема б. С продольным ила круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища.

Схема в. С продольным движением потока. Водовыпускные сооружения располагаются в противоположных концах водохранилища, а водозаборное – в средней части.

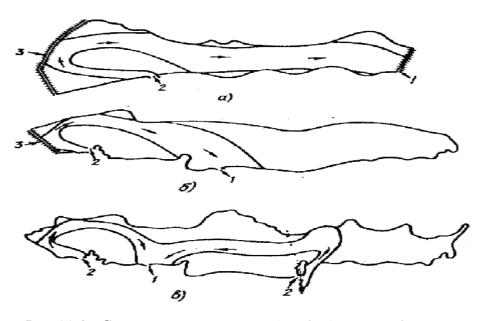
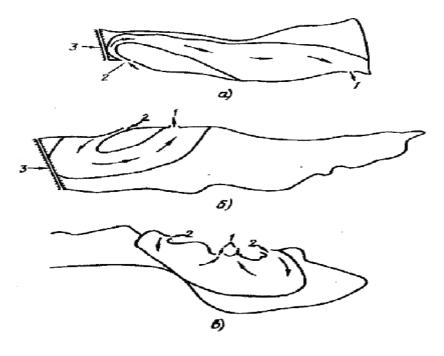



Рис.11.3. Схемы расположения (a, δ, ϵ) водозаборных и водовыпускных сооружений на вытянутых узких водохранилищах(1 - водозаборное сооружение; 2 – водовыпускное сооружение; 3 – плотина).

водозаборные сооружения примыкают к ТЭС.

Рис.11.4. Схемы расположения (a, δ, ϵ) водозаборных и водовыпускных сооружений на вытянутых широких водохранилищах (1 - водозаборное сооружение; 2 - водовыпускное сооружение; 3 - плотина).

— Водохранилища округлые (правильной или неправильной формы), 0.5 < B/L < 1 (рис.11.5).

Схема a. С поперечным движением потока. Водовыпускное и водозаборное сооружения расположены на противоположных берегах. Схема δ . С круговым движением потока, формируемым струенаправляющими дамбами или сооружениями. Водовыпускные и

Схема в. С круговым движением потока и тупиковыми зонами. Водовыпускное и водозаборное сооружения расположены вблизи ТЭС.

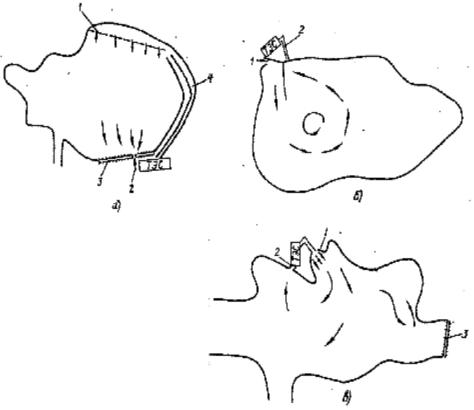


Рис.11.5. Схемы расположения (a, δ, ϵ) водозаборных и водовыпускных сооружений на округлых (правильной или неправильной формы) водохранилищах (1 - водовыпускное сооружение; 2 - водозаборное сооружение; 3 - плотина)

- Водохранилища искусственные наливные, 0.2 < B/L < 0.5 (рис.11.6). Схемы a, δ . Вытянутое широкое с продольным движением потока. Водовыпускное и водозаборное сооружения расположены на противоположных концах.

Схема в. Вытянутое, симметрично расширяющееся.

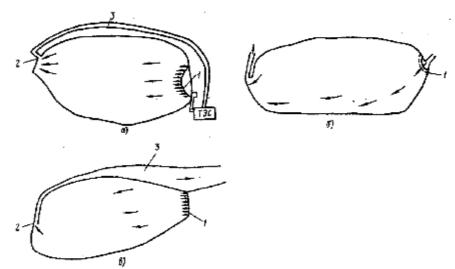


Рис.11.6. Схемы расположения (a, δ, ϵ) водозаборных и водовыпускных сооружений на наливных водохранилищах (1 - водовыпускное сооружение; 2 - водозаборное сооружение; 3 - водоотводящий канал)

11.1.2.2. Коэффициенты эффективности для каждой схемы циркуляции в водохранилищах-водоохладителях приведены в таблице 11.1. [5]

Таблица 11.1. Коэффициент эффективности $K_{9\phi}$ водохранилищ-охладителей

Рис.11.3 Вытянутое узкое, <i>B/L</i> < 0,2 С продольным движением потока. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < <i>B/L</i> < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в О,65	Схема по		K_{ig}		
Рис.11.3 Вытянутое узкое, <i>B/L</i> < 0,2 С продольным движением потока. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное − в средней части Рис.11.4 Вытянутое широкое, 0,2 < <i>B/L</i> < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в С продольным движением потока. Водовыпускные сооружения расположены в О,65	рисунку	Схема водохранилища-охладителя			
а С продольным движением потока. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в од,65		Вытянутое узкое, $B/L < 0.2$			
расположены в противоположных концах водохранилища С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное – в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в О,65	a	С продольным движением потока.			
расположены в противоположных концах водохранилища С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в О,65		Водовыпускное и водозаборное сооружения	0,8		
б С продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема 0,7 в С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное − в средней части 0,8 Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5		расположены в противоположных концах			
тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное − в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65		1			
водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65		<u> </u>			
водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема С продольным движением потока. Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. В Водовыпускные сооружения расположены в 0,65	б		0.7		
водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. водовыпускные сооружения расположены в 0,65			0,7		
Водовыпускные сооружения расположены в противоположных концах водохранилища, водозаборное – в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65		1			
водозаборное – в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65		1	l		
водозаборное — в средней части Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65	в		0,8		
Рис.11.4 Вытянутое широкое, 0,2 < B/L < 0,5 С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища 0,7 б С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища 0,6 в С продольным движением потока. Водовыпускные сооружения расположены в 0,65		<u> </u>			
а С продольным движением потока по всей длине. Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65	Drvo 11 /				
а Водовыпускное и водозаборное сооружения расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65	Рис.11.4	ž i			
расположены в противоположных концах водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65		<u> </u>			
водохранилища С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65	а	1	0,7		
С продольным или круговым движением потока в одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65					
одной части и тупиковой зоной в другой. Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65	б	1			
Водовыпускное и водозаборное сооружения расположены в средней части водохранилища С продольным движением потока. в Водовыпускные сооружения расположены в 0,65					
расположены в средней части водохранилища С продольным движением потока. Водовыпускные сооружения расположены в 0,65		1	0,6		
С продольным движением потока. Водовыпускные сооружения расположены в 0,65		1 10			
в Водовыпускные сооружения расположены в 0,65	в				
		1 1	0.65		
противоположных концах водохранилища, а		противоположных концах водохранилища, а			

	водозаборное – в средней части			
Рис.11.5	Водохранилище округлое (правильной, или			
	неправильной формы) $0.5 < B/L < 1$			
	С поперечным движением потока.			
а	Водовыпускное и водозаборное сооружения	0,75		
	расположены на противоположных берегах			
	С круговым движением потока, формируемым			
б	струенаправляющими дамбами или	0,85		
0	сооружениями. Водовыпускные и водозаборные			
	сооружения прилегают к ТЭС			
	С круговым движением потока и тупиковыми			
В	зонами. Водовыпускное и водозаборное	0,8		
	сооружения расположены вблизи ТЭС			
Рис.11.6	Искусственные наливные, $0.2 < B/L < 0.5$			
а, б	Вытянутое широкое с предельным движением			
	потока. Водовыпускное и водозаборное	0,8		
	сооружения расположены на противоположных			
	концах водохранилища			

- 11.1.2.3. Расчет проводится графоаналитическим методом.
- 11.1.2.4. Для электростанций с турбинами типа «ПТ», «П», и «Т» расчет проводится на полный состав работающего оборудования расчетных тепловых нагрузках отборов, расходах пара в голову турбин a также исходных электрических конденсатор, нагрузках, приведенных форме согласно приложению настоящим Методическим указаниям.
- 11.1.2.5. Для электростанций с турбинами типа «К» расчет проводится при расходах пара в голову турбины и в конденсатор, приведенных в форме согласно приложению 4 к настоящим Методическим указаниям.
- 11.1.2.6. По отношению ширины к длине водохранилища (B/L) и расположению водозаборных и водовыпускных сооружений по приведенной в п. 11.1.2.1 настоящих Методических указаний классификации определяется схема циркуляции, к которой относится водохранилище-охладитель.
- 11.1.2.7. Для выбранной схемы циркуляции по табл. 11.1 выбирается коэффициент эффективности. По известной площади водохранилища-охладителя Ω с учетом его эффективности определяется площадь активной зоны по формуле:

$$\Omega_{a\kappa m} = k_{sob} \cdot \Omega , \kappa M^2$$
 (11.14)

11.1.2.8. Определяется удельная площадь активной зоны по формуле:

$$W_{y\partial} = \frac{\Omega_{a\kappa m}}{W} \cdot 10^6, \quad M^2/(M^3/\text{cyT})$$
 (11.15)

где W — суточный расход циркуляционной воды в водохранилище $(m^3/\text{сут})$, определяемый как произведение часового расхода циркуляционной воды (определяемого параметрами конденсаторов, либо, при наличии технических заключений и результатов натурных

испытаний, производительностью циркнасосов, пропускной способностью трубопроводов и сооружений и прочими причинами) на количество часов в сутках.

- 11.1.2.9. Расчетные метеорологические параметры определяются в соответствии с Главой 10 настоящих Методических указаний.
- 11.1.2.10. Определяется тепловая нагрузка циркуляционной системы в расчетном режиме по формуле

$$U_0 = \sum_{j=1}^{n} (D_{kj} \cdot \Delta h_j),$$
 Мкал/ч (11.16)

11.1.2.11. Определяется перепад температур воды в гидроохладителе в расчетном режиме по формуле:

$$\Delta t^{\rm cB} = U_{\rm o}^{\rm p} / \gamma CW , \quad {}^{0}{\rm C}$$
 (11.17)

где произведение $g \cdot C$ принимается равным 1;

W – часовой расход воды через конденсаторы ($M^3/4$);

- 11.1.2.12. Задается несколько произвольных значений Dt^{cs} , меньших полученной по формуле (11.17) величины. Кроме того задается несколько произвольных значений температуры воды в естественном водоеме t_s^{ecm} (например, с шагом 5^0 C).
- 11.1.2.13. Определение температуры охлаждающей воды на входе в конденсатор для каждого из заданных значений Dt^{ce} (включая расчетное) при нескольких произвольно заданных значениях t_e^{ecm} для определенных метеорологических параметров осуществляется по универсальной номограмме, приведенной на рис. 11.7. [5]

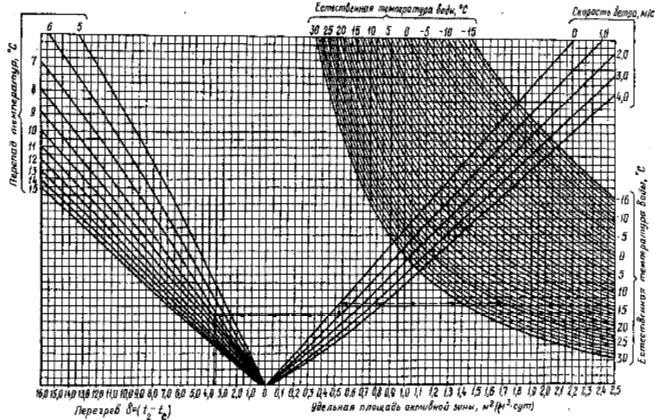


Рис. 11.7 Номограмма для теплового расчета водохранилищ-охладителей

11.1.2.14. Последовательность действий для одного из сочетаний значений t_e^{ecm} и Dt^{ce} при работе с номограммой показана стрелками на рис. 11.7 и состоит в следующем:

Находится точка на изолинии для данного значения t_e^{ecm} , соответствующая расчетной удельной площади активной зоны, определенной в п. 11.1.2.8 настоящих Методических указаний.

От данной точки проводится горизонтальная линия до пересечения с изолинией, соответствующей величине скорости ветра 0 м/c.

От полученной точки пересечения проводится вниз вертикальная линия до пересечения с изолинией, соответствующей расчетной величине скорости ветра, определенной в соответствии с положениями п. 10.2 настоящих Методических указаний.

Далее из полученной точки вновь проводится горизонтальная линия до пересечения с изолинией перепада температур воды в гидроохладителе, рассчитанного в п. 11.1.2.11 настоящих Методических указаний, и для этой точки определяется соответствующая величина перегрева воды в водохранилище δ (0 C).

При отсутствии на номограмме необходимые изолинии определяются методом интерполяции.

Если площадь зеркала водохранилища небольшая, и определяемая формулой (11.15) удельная площадь активной зоны мала, что может привести при определении величин перегрева воды в водохранилище к выходу промежуточных точек за пределы приведенной номограммы, необходимо последовательно снижать суточный (а, следовательно, и часовой) расход воды в водохранилище (через конденсаторы) с одновременным, при необходимости, снижением паровой нагрузки конденсаторов (при снижении расхода воды через конденсаторы при неизменной их паровой нагрузке увеличивается средневзвешенный нагрев воды в конденсаторах) до тех пор, пока при полученных значениях w_{yo} и Dt^{cs} все расчетные промежуточные точки не окажутся в рабочем поле номограммы. Экстраполяция изолиний за пределы номограммы не допускается.

- 11.1.2.15. Для остальных сочетаний значений t_s^{ecm} и Dt^{cs} последовательность действий при определении величин δ аналогично изложенной в п. 11.1.2.14.
- 11.1.2.16. Величины температур воды на входе в конденсаторы t_2 определяются для всех значений δ при соответственных заданных значениях t_s^{ecm} по следующей формуле:

$$t_2 = t_{\hat{a}}^{\hat{a}\hat{n}\hat{o}} + d$$
, 0 C (11.18)

При схемах систем технического водоснабжения, когда вода из водохранилища перед подачей в конденсаторы смешивается с водой из стороннего водоема, итоговая температура воды на входе в

конденсаторы будет отличаться от полученных значений t_2 . Итоговая величина температуры воды на входе в конденсаторы будет определяться из уравнения теплового баланса для точки смешения как средневзвешенная величина из полученной температуры воды на выходе из водохранилища и известной естественной температуры стороннего водоема.

По полученным результатам заполняется форма (таблица 11.2)

Таблица 11.2. Промежуточная форма результатов определения температур на входе в конденсаторы.

	Dt^{ce} , ${}^{0}C$								
t_{θ}^{ecm}	значение		Значение		значение		значение		
⁰ C	δ, ⁰ C	t_2 , 0 C	δ, ⁰ C	$t_2, {}^{0}C$	δ, ⁰ C	$t_2, {}^{0}C$	δ, ⁰ C	t_2 , 0 C	
значение	значение	значение	значение	значение	значение	значение	значение	значение	

- 11.1.2.17. По данным таблицы, сформированной в п. 11.1.2.16., строится графическая зависимость $t_2 = f(t_e^{ecm}; Dt^{ce})$, примерный вид которой показан на рис. 11.8.
- 11.1.2.18. Далее осуществляется определение максимально допустимых значений температуры охлаждающей воды по каждому турбоагрегату (а также максимально допустимых расходов пара в конденсатор), при превышении которых на турбоагрегатах появляются ограничения паровой нагрузки и, соответственно, электрической мощности:
- по условиям предельно допустимого давления отработавшего пара в конденсаторах турбин $p_2 = 12 \text{ кПа } (0.12 \text{ кгс/cm}^2), t_{np}" = 49.1 \text{ °C}.$
- по техническим условиям эксплуатации МГО $t_2^{\text{св}} \le 33\,^{\circ}\text{C}$. Данное условие не учитывается в случаях, когда охлаждение МГО производится от постороннего источника охлаждающей воды.
- 11.1.2.19. Задаемся несколькими произвольными значениями температуры воды перед конденсаторами $t_2^{c_6}$.

Для каждой турбины при каждом задаваемом значении t_2^{ce} определяем температуру насыщенного пара в конденсаторе по формуле:

$$t''_{H} = t_{2}^{\text{CB}} + \Delta t_{Kj}^{\text{p}} + \delta t_{j}^{\text{p}}, \, ^{\circ}\text{C}$$
 (11.19)

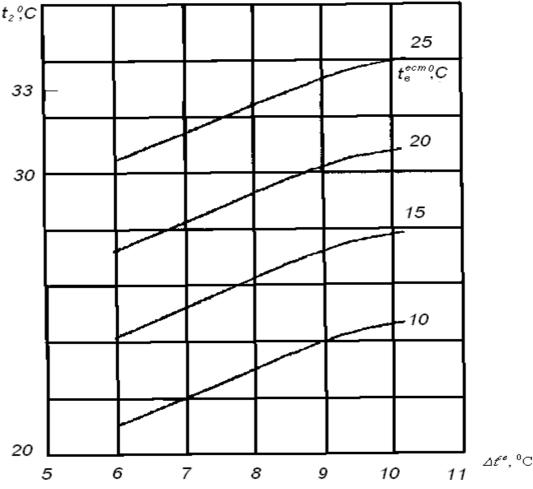


Рис. 11.8. Примерный вид зависимости $t_2 = f(t_s^{ecm}; Dt^{cs})$

В формуле (11.19):

 Δt^{p}_{kj} – нагрев воды в конденсаторе турбины, определяемый по формуле:

$$\Delta t_{kj}^{\delta} = \frac{(D_{kj}^{p} \cdot \Delta h_{j})}{W_{kj}}, \, ^{\circ}C$$
 (11.20)

где D^p_{kj} – расчетный расход пара в конденсатор турбины (тонн/ч);

 W_{kj} – расход охлаждающей воды в конденсатор (м³/ч);

 Δh_j — разность теплосодержаний отработавшего пара и конденсата при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины, ккал/кг.

 $\delta t^p_{\ j}$ – температурный напор конденсатора, °С.

Пример определения температурных напоров конденсаторов приведен в п. 11.1.1.16 настоящих Методических указаний.

11.1.2.20. По полученным по формуле (11.19) значениям температуры насыщения строится график зависимости $t_{\rm H}'' = f(t_2^{\rm cB})$, на который также

наносится граничная линия, соответствующая величине $t_n'' = t_{np}'' = 49,1$ °C (или другой ограничивающей величине).

11.1.2.21. По графику определяем для каждой турбины в точке пересечения линии зависимости $t''_{\rm H} = f(t_2^{\rm cB})$ с граничной линией (49,1°C или другая величина) значения $t_2^{\rm cB}$, которые являются для каждой турбины граничными точками, указывающими на то, что при превышении температуры охлаждающей воды на входе в конденсатор относительно этой величины $t_2^{\rm cB}$ необходимо снижать расход пара в конденсатор.

По новым расчетным значениям t_2^{ce} (расчетными значениями t_2^{ce} для каждой из турбин далее являются полученные точки перегиба для всех турбин и точка $t_2^{ce} = 33^{0}$ С) для каждой турбины осуществляется расчет по формуле (11.19) новых значений t_n ". Кроме того, для каждой турбины определяются значения t_n , соответствующие $t_2^{ce} = 33^{0}$ С (по условиям эксплуатации МГО).

11.1.2.22. Для каждой турбины по полученным значениям t_2^{cg} , t_{H}^{cg} (включая величину t_{H}^{cg} , соответствующую $t_2^{cg} = 33^{\circ}$ С) определяются допустимые величины расходов пара в конденсатор путем расчета коэффициентов снижения паровой нагрузки конденсатора по формуле:

$$c_{j} = \frac{t_{np}^{"} - t_{2}^{ce}}{t_{n}^{"} - t_{2}^{ce}} \quad , \tag{11.21}$$

где t_{np} " = 49,1°С (или другой ограничивающей величине).

11.1.2.23. По полученным коэффициентам определяем допустимый расход пара в конденсатор каждой из турбин, причем, при коэффициентах $c_j \ge 1$, $D_{kj} = D^p_{kj}$, поскольку принимавшиеся в качестве исходных данных величины D^p_{kj} (а, следовательно, расходы в голову турбин и электрическая нагрузка) соответствовали максимальным технически возможным значениям (электрическая нагрузка при этом может превышать величину установленной мощности для турбин типа «ПТ» и «Т»).

При коэффициентах c_j <1 величины допустимых расходов пара в конденсатор определяются по формуле:

$$D_{\kappa j} = \chi_{j} D_{\kappa j}^{p}, \quad \text{TOHH/Y}$$
 (11.22)

- 11.1.2.24. По полученным для каждой величины t_2^{ce} расходам пара в конденсаторы D_{kj} определяются тепловая нагрузка циркуляционной системы U_0 по формуле (11.16) и перепад температур воды в гидроохладителе Dt^{ce} по формуле (11.17).
- 11.1.2.25. На график, построенный в п. 11.1.2.17 настоящих Методических указаний, наносятся точки t_2^{ce} и соответствующие им значения Dt^{ce} , определенные в предыдущем пункте.
- 11.1.2.26. По графику методом интерполяции определяются величины естественных температур водоема t_e^{ecm} , проходящие через нанесенные точки.

- 11.1.2.27. Естественная температура водоема в расчетном подпериоде принимается в соответствии с п. 5.6.9 настоящих Методических указаний.
- 11.1.2.28. Определение электрических нагрузок по рассчитанным в п. 11.1.2.23 настоящих Методических указаний допустимым расходам пара в конденсатор осуществляется аналогично п.п. 11.1.1.19-11.1.1.21 Методических указаний.
- 11.1.2.29. По определенным в п. п. 11.1.2.26 и 11.1.2.28 настоящих Методических указаний данным строится зависимость электрической мощности от естественной температуры воды в водоеме $N_{\scriptscriptstyle 9,n}=f(t_{\scriptscriptstyle g}^{\;\;ecm})$. На основании зависимостей для каждой турбины отдельно строится суммарная зависимость в целом по станции для данного расчетного подпериода.
- 11.1.2.30. Определение величины ограничений по графику, связанных с обеспеченностью электрической мощности системами технического водоснабжения осуществляется аналогично п.п. 11.1.1.23-11.1.1.25 и 11.1.1.27-11.1.1.28 настоящих Методических указаний, при этом на график вместо расчетной температуры наружного воздуха накладывается расчетная естественная температура водоема.
- 11.2. Электростанции с прямоточными системами технического водоснабжения.

11.2.1. Алгоритм расчета для электростанций с прямоточной схемой при отсутствии экологических ограничений по температуре сбросной воды.

11.2.1.1. Принципиальная схема технического водоснабжения представлена на рис. 11.9.

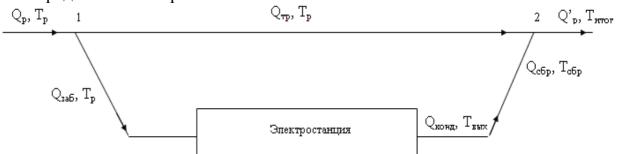


Рис. 11.9. Принципиальная схема технического водоснабжения

- 11.2.1.2. Определение расчетной величины притока воды в реке в районе водозабора осуществляется в соответствии с положениями п. 5.6.8. Методических указаний.
- 11.2.1.3. Определение естественной температуры воды в реке осуществляется в соответствии с п. 5.6.9 настоящих Методических указаний.

- 11.2.1.4. Расчет проводится графоаналитическим методом.
- 11.2.1.5. Для электростанций с турбинами типа «ПТ», «П», и «Т» расчет проводится на полный состав работающего оборудования при расчетных тепловых нагрузках отборов, расходах пара в голову турбин и конденсатор, а также исходных электрических нагрузках, приведенных в форме, заполняемой согласно приложению 4 к настоящим Методическим указаниям. Для электростанций с турбинами типа «К» расчет проводится при расходах пара в голову турбины и в конденсатор, приведенных в форме согласно приложению 4 к настоящим Методическим указаниям.
- 11.2.1.6. Расчетные расходы охлаждающей воды через конденсаторы турбин при отсутствии ограничений по расходу заборной воды принимаются равные номинальным расходам конденсатора.
- 11.2.1.7. При наличии ограничений по расходу заборной воды, связанных с требованиями экологического характера (при условии представления подтверждающих документов: лицензии предписаний водопользование, или заключений уполномоченных организаций), либо в связи с недостаточной пропускной способностью каналов, трубопроводов, недостаточной производительностью насосов представлении технических заключений, характеристик результатов натурных испытаний, проведенных лицензированными организациями) распределение суммарного расхода воды между конденсаторами турбин осуществляется:
 - Для схем с поперечными связями пропорционально номинальному расходу воды через конденсаторы турбин согласно паспортным данным;

$$W_{kj} = (W_{kj}^{n} / \sum_{j=1}^{n} W_{kj}^{n}) \cdot W$$
 (11.23)

где W_{kj}^{n} — номинальный расход охлаждающей воды через конденсатор турбины, м³/ч;

 W_{kj} – расчетный расход охлаждающей воды через конденсатор турбины, м³/ч;

- Для блочных схем пропорционально подаче циркуляционных насосов;
- 11.2.1.8 Учет влияния параметров технического водоснабжения МГО при отборе воды на МГО с напорного трубопровода (подводящего канала) осуществляется следующим образом:
 - При отсутствии ограничений по расходу заборной воды величина расхода воды и температурное воздействие МГО не учитываются;
 - При наличии ограничений по расходу заборной воды величина расхода воды на МГО определяется согласно паспортным характеристикам оборудования и, для упрощения расчетов, соответствует номинальному значению. Расход воды на МГО

турбин с противодавлением, газовых турбин (то есть турбин, не учитываемых в расчете обеспеченности мощности системами технического водоснабжения) также должен включаться в суммарную величину расхода воды. При этом для турбин типа «Р», имеющих в расчетном подпериоде ограничения в размере полной установленной мощности в связи с отсутствием тепловых нагрузок, величина расхода воды на МГО не учитывается, а при наличии тепловых нагрузок расход принимается с учетом величины этих нагрузок. Кроме того, не должен учитываться расход воды через находящиеся в резерве теплообменники.

– При последовательной схеме подключения конденсаторов по охлаждающей при наличии ДЛЯ существующей воде электростанции схемы технического водоснабжения возможности подачи воды на МГО всех турбин с напорного водовода первой по ходу воды турбины (или подводящего канала) величина расхода последовательно подключенный конденсатор определяется без учета расхода на МГО данной турбины, при этом для последовательно подключенной турбины также не учитывается условие максимально допустимой температуры воды на входе в конденсатор по техническим условиям эксплуатации M Γ O $t_2^{CB} \leq 33$ °C.

11.2.1.9. Алгоритм расчета при отсутствии ограничений по параметрам сбросной воды состоит в следующем:

Задаются несколько произвольных значений естественных температур воды в реке $t_2^{\it ecm}$.

Осуществляется распределение расхода охлаждающей воды между конденсаторами турбин.

Для каждого принятого t_2^{ecm} значения для каждой турбины при известных расходах воды и пара в конденсаторы определяются температурные напоры конденсаторов δt .

По формуле (11.8) определяются величины нагрева охлаждающей воды в конденсаторах каждой из турбин.

По формуле (11.7) для каждого заданного значения t_2^{ecm} , и соответствующим ему величинам температурных напоров конденсаторов, для каждой турбины определяются значения температур насыщения пара в конденсаторе t_H^m .

Строится график зависимости для каждой турбины $t_{H}^{"}=f(t_{2}^{ecm})$, на который также наносится линия ограничения $t_{H}^{"}=49,1^{0}$ С, соответствующая предельно-допустимому давлению в конденсаторе.

По данному графику определяются значения t_2^{ecm} в точках пересечения зависимостей для каждой турбины $t_H^{"}=f(t_2^{ecm})$ с линией $t_H^{"}=49,1^0$ С.

Для полученных новых значений t_2^{ecm} для каждой из турбин осуществляется пересчет температурных напоров и величин $t_{\ \mu}^{\ \mu}$ по формуле (11.7).

По известным значениям t_2^{ecm} , $t_{H}^{"}$ для каждой турбины по формулам (11.9) и (11.10) определяются коэффициенты снижения паровой нагрузки конденсаторов и допустимые расходы пара в конденсатор.

При каждом из заданных значений t_2^{ecm} , для каждой турбины по известным значениям расхода пара в конденсатор определяются расходы в голову турбины и электрическая нагрузка с учетом поправок на изменение давления пара аналогично п.п. 11.1.1.19-11.1.21 настоящих Методических указаний.

По определенным данным для каждой энергоустановки строится зависимость электрической мощности от естественной температуры воды в водоеме $N_{\scriptscriptstyle 3,n}=f(t_2^{\;\;ecm})$. На основании зависимостей для каждой турбины отдельно строится суммарная зависимость в целом по станции для данного расчетного подпериода.

По полученному графику при известной для расчетного подпериода величине t_2^{ecm} , определяется величина располагаемой мощности электростанции и величина ограничений мощности по условиям обеспеченности электрической мощности системами технического водоснабжения.

Ограничения установленной мощности по ГТПГ определяются путем суммирования соответствующих ограничений по каждой относящейся к данной ГТПГ энергоустановке, определяемых при расчетной величине t_2^{ecm} по построенным графикам.

11.2.2. Алгоритм расчета для электростанций с прямоточной схемой при наличии ограничений по температуре сбросной воды.

- 11.2.2.1. Количественные показатели температуры сбросной воды определяются исходя из необходимости соблюдения требований экологического характера в установленном створе на уровне или ниже водосброса, устанавливаемых в зависимости от категории водного объекта.
- 11.2.2.2. Подтверждением необходимости соблюдения определенного температурного режима водоема служит перечень представляемых электростанцией документов в соответствии с п 5.10.1 настоящих Методических указаний.
- 11.2.2.3. Принципиальная схема технического водоснабжения представлена на рис. 11.10.

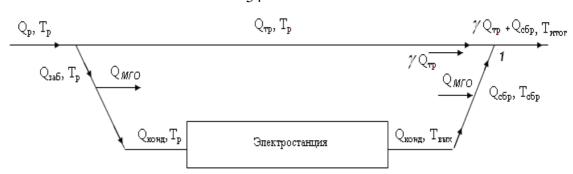


Рис. 11.10. Принципиальная схема технического водоснабжения

- 11.2.2.4. Определение расчетной величины притока воды в реке в районе водозабора осуществляется в соответствии с положениями п. 5.6.8 настоящих Методических указаний.
- 11.2.2.5. Определение естественной температуры воды в реке осуществляется в соответствии с положениями п. 5.6.9 настоящих Методических указаний.
- 11.2.2.6. Для электростанций с турбинами типа «ПТ», «П», и «Т» расчет проводится на полный состав работающего оборудования при расчетных тепловых нагрузках отборов, расходах пара в голову турбин исходных электрических нагрузках, конденсатор, также приведенных в форме, заполненной согласно приложению 4 к настоящим Методическим указаниям. Для электростанций с турбинами типа «К» расчет проводится при расходах пара в голову турбины и в конденсатор по форме согласно приложению 4 к настоящим Методическим указаниям.
- 11.2.2.7. Определение транзитного расхода в реке осуществляется по формуле:

$$Q_{mp} = Q_p - Q_{3a6},$$
 $M^3/4$ (11.24)

где Q_p — приток воды в реке, определенный в п. 11.2.2.4;

 $Q_{3a\delta}$ – величина расхода воды, забираемой из реки;

- 11.2.2.8. Величина $Q_{3a\delta}$ при отсутствии ограничений по объемам заборной воды, а также ограничений по недостаточной производительности насосов и пропускной способности трубопроводов численно равна сумме номинальных расходов воды через конденсаторы турбин и расхода воды на МГО.
- 11.2.2.9. Распределение охлаждающей воды между конденсаторами турбин при наличии ограничений по расходу осуществляется аналогично п. 11.2.1.7 настоящих Методических указаний.
- 11.2.2.10. Суммарный расход воды на МГО определяется согласно паспортным характеристикам оборудования и, для упрощения расчетов, соответствует номинальному значению. Расход воды на МГО турбин с противодавлением, газовых турбин (то есть турбин, не учитываемых в расчете обеспеченности мощности системами технического водоснабжения) также должен включаться в суммарную величину

расхода воды. При этом для турбин типа «Р», имеющих в расчетном подпериоде ограничения в размере полной установленной мощности в связи с отсутствием тепловых нагрузок, величина расхода воды на МГО не учитывается, а при наличии тепловых нагрузок расход принимается с учетом величины этих нагрузок.

- 11.2.2.11. При схеме возврата воды с МГО в сбросной трубопровод (отводящий канал) учет температурного воздействия МГО для упрощения расчетов не учитывается (то есть принимаем, что при такой схеме нагрев воды после прохождения через МГО численно равен средневзвешенному нагреву охлаждающей воды в конденсаторах).
- 11.2.2.12. При наличии отводящего канала открытого типа потери воды, связанные с испарением в канале, условно принимаются в размере 0,5% от суммарного расхода сбросной воды с учетом возврата с МГО для открытых каналов длиной более 2 км и 1 во всех остальных случаях.
- 11.2.2.13. Для электростанций, которым по условиям соблюдения водного законодательства пункты контроля параметров сбросных вод установлены непосредственно в месте водосброса, допустимый средневзвешенный нагрев воды в конденсаторах численно равен допустимому превышению температуры сбросной воды над естественной температурой согласно действующим нормативам сброса загрязняющих веществ или указываемым в приложении к лицензии на водопользование свойствам сточных вод. Для данных электростанций расчет следует проводить, начиная с п. 11.2.2.23 (формулы 11.37).
- 11.2.2.14. Для электростанций, которым по условиям соблюдения водного законодательства пункты контроля параметров сбросных вод установлены на заданном расстоянии от места водосброса, учитывается частичное перемешивание сбросной воды с транзитным расходом реки по методу Фролова-Родзиллера:
 - Определяется коэффициент смешения, показывающий, какая часть речной воды в расчетном створе смешивается со сточной по формуле:

$$g = \frac{1 - e^{-a\sqrt[3]{l}}}{1 + \frac{Q_{mp}}{Q_{cop}} \cdot e^{-a\sqrt[3]{l}}}$$
(11.25)

где Q_{mp} – транзитный расход в реке, м³/ч; Q_{cop} – расход сбрасываемой воды, м³/ч;

 \emph{l} - расстояние от места выпуска сточных вод до расчетного створа, м;

а - коэффициент, учитывающий гидравлические условия в реке, определяется по формуле:

$$a = j \cdot y \cdot \sqrt[3]{\frac{D}{Q_{\text{cop}}}}$$
(11.26)

где j – коэффициент извилистости реки, или ее фарватера (отношение длины реки от места выпуска до расчетного створа по фарватеру к расстоянию по прямой);

y – коэффициент, зависящий от характера выпуска сточных вод (для берегового выпуска y = 1, для рассосредоточенного выпуска y = 1,5);

D – коэффициент турбулентной диффузии $\text{м}^2/\text{c}$, определяется по упрощенной формуле:

$$D = \frac{V_p \cdot H_p}{200} \tag{11.27}$$

где H_p – средняя глубина реки, м;

 V_p — средняя скорость течения воды в реке, м/с (по данным местных метеослужб);

11.2.2.15. Для определения предельно допустимых температур воды на выходе из конденсаторов (параметр $T_{\rm вых}$ на рис. 11.10) по условиям обеспечения требований по соблюдению температурного режима в любой точке контрольного створа необходимо записать уравнения теплового баланса для точки 1 с учетом перемешивания части транзитного расхода со сбросной водой. (рис. 11.10).

Точка 1:
$$\mathbf{g} \cdot Q_{mp} \cdot T_p + Q_{c\delta p} \cdot T_{c\delta p} = (\mathbf{g} \cdot Q_{mp} + Q_{c\delta p}) \cdot T_{umoc}$$
 (11.28)
где $T_{umoc} = T_p + dT_{oon}$ (11.29)

11.2.2.16. Расход охлаждающей воды через конденсаторы турбин определяется по формуле:

$$Q_{\kappa O H \hat{O}} = Q_{3 a \hat{O}} - Q_{M \Gamma O} \tag{11.30}$$

11.2.2.17. Расход сбросной воды определяется по формуле:

$$Q_{c\delta p} = k_{nom} \cdot (Q_{\kappa o n \partial} + Q_{M \Gamma O}) = k_{nom} \cdot Q_{sa\delta}; \qquad (11.31)$$

Коэффициент k_{nom} — коэффициент, учитывающий потери воды в сбросном канале, равный 0,995 для открытых сбросных каналов длиной более 2 км, и 1 — для всех остальных и закрытых трубопроводов.

11.2.2.18. По заданной величине T_{umoz} , из формулы (11.28) выражаем величину $T_{c\delta p}$, которая в нашем случае в виду не учета температурного воздействия МГО равна средневзвешенной температуре охлаждающей воды на выходе из конденсаторов:

$$T_{c\delta p} = \frac{(\mathbf{g} \cdot Q_{mp} + Q_{c\delta p}) \cdot T_{umoc} - \mathbf{g} \cdot Q_{mp} \cdot T_{p}}{Q_{c\delta p}}$$
(11.32)

11.2.2.19. С учетом формулы (11.29) формула (11.32) примет вид:

$$T_{c\delta p} = \frac{(g \cdot Q_{mp} + Q_{c\delta p}) \cdot (T_p + dT_{\partial on}) - g \cdot Q_{mp} \cdot T_p}{Q_{c\delta p}} =$$

$$=\frac{g\cdot Q_{mp}\cdot T_{p}+g\cdot Q_{mp}\cdot dT_{\partial on}+Q_{c\delta p}\cdot dT_{\partial on}+Q_{c\delta p}\cdot T_{p}-g\cdot Q_{mp}\cdot T_{p}}{Q_{c\delta p}}=$$

$$= \frac{g \cdot Q_{mp} \cdot dT_{\partial on} + Q_{c\delta p} \cdot (dT_{\partial on} + T_{p})}{Q_{c\delta p}}$$
(11.33)

11.2.2.20. В формулу (11.33) подставляем выражение $Q_{c\delta p}$ из формулы (11.31):

$$T_{c\delta p} = \frac{g \cdot (Q_p - Q_{3a\delta}) \cdot dT_{\partial on} + k_{nom} \cdot Q_{3a\delta} \cdot (dT_{\partial on} + T_p)}{k_{nom} \cdot Q_{3a\delta}} =$$

$$= \frac{g \cdot (Q_p - Q_{3a6}) \cdot dT_{\partial on}}{k_{nom} \cdot Q_{3a6}} + dT_{\partial on} + T_p$$
(11.34)

11.2.2.21. Поскольку величина $T_{c\delta p}$ в нашем случае равна средневзвешенной температуре воды на выходе из конденсаторов, а температура на входе равна естественной температуре T_p воды в водоеме, величину $T_{c\delta p}$ можно выразить через нагрев воды в конденсаторах:

$$T_{c\delta p} = T_p + \Delta t_k \tag{11.35}$$

11.2.2.22. Подставив выражение из формулы (11.35) в формулу (11.34), выразим значение допустимого средневзвешенного нагрева воды в конденсаторах турбин Δt_k .

$$\Delta t_{k} = \frac{\mathbf{g} \cdot (Q_{p} - Q_{3a\delta}) \cdot dT_{\partial on}}{k_{nom} \cdot Q_{3a\delta}} + dT_{\partial on} + T_{p} - T_{p} =$$

$$= \left(\frac{\mathbf{g} \cdot (Q_{p} - Q_{3a\delta})}{k_{nom} \cdot Q_{3a\delta}} + 1\right) \cdot dT_{\partial on}$$
(11.36)

11.2.2.23. По определенной по формуле (11.36) для данного расчетного подпериода величины допустимого средневзвешенного нагрева воды в конденсаторах определяем допустимую тепловую нагрузку системы:

$$U_0^{\tilde{a}\tilde{n}\tilde{r}} = \Delta t_k \cdot Q_{\hat{e}\tilde{t}\tilde{t}\tilde{a}} = \sum_{i=1}^n (D_{kj} \cdot \Delta h_j),$$
 Мкал/ч (11.37)

где
$$Q_{\kappa o n \partial} = \sum_{j=1}^{n} Q_{\kappa o n \partial j}$$
 M^3/q (11.38)

11.2.2.24. Для известных значений D_{kj} (исходные данные), а также при известных расходах воды в конденсатор определяется нагрев воды в конденсаторе каждой турбины по формуле (11.8).

11.2.2.25. По известной для данного расчетного подпериода естественной температуре воды водоеме (на входе в конденсатор), расходам воды и пара в конденсатор по нормативным характеристикам конденсаторов определяются температурные напоры конденсаторов δt.

11.2.2.26. По формуле (11.7) определяются температуры насыщенного пара в конденсаторах каждой из турбин при расчетной температуре воды на входе в конденсаторы.

11.2.2.27. В случае, если для какой либо из турбин полученная в п. 11.2.2.26 настоящих Методических указаний величина t_n^r превышает величину t_n^r =49,1°C, соответствующую предельнодопустимому давлению в конденсаторе, для таких турбин определяются коэффициенты снижения паровых нагрузок по формуле (11.9), в которую место значений $t_2^{c_0}$ подставляются значения T_p , а по формуле (11.10) определяются допустимые расходы пара в конденсаторы $D_{k_j}^p$ по условиям достижения предельно допустимого давления в конденсаторах.

11.2.2.28. По полученным в п. 11.2.2.27 настоящих Методических указаний расходам $D_{kj}^{\ \ p}$ определяем расчетную тепловую нагрузку системы $U_0^{\ p}$:

$$U_0^{\delta} = \sum_{i=1}^{n} (D_{ki}^{\delta} \cdot \Delta h_j)$$
 (11.39)

11.2.2.29. Если полученная в п. 11.2.2.28 настоящих Методических указаний величина тепловой нагрузки U_0^p меньше или равна допустимой величины $U_0^{\delta on}$, полученной в п. 11.2.2.23 настоящих Методических указаний, далее определяются расходы пара в голову турбин и соответствующая располагаемая электрическая мощность при заданных нагрузках отборов аналогично п.п. 11.1.1.19-11.1.1.21 настоящих Методических указаний.

11.2.2.30. Если полученная в п. 11.2.2.28 настоящих Методических указаний величина тепловой нагрузки U_0^p больше допустимой величины $U_0^{\partial on}$, необходимо снизить расходы пара в конденсаторы одной или нескольких турбин относительно полученных в п. 11.2.2.27 настоящих Методических указаний значений до величин, при которых определяемая по формуле (11.39) величина тепловой нагрузки U_0^p станет равна величине $U_0^{\partial on}$. Дальнейшие действия аналогичны п. 11.2.2.29 настоящих Методических указаний.

ограничений электрической Величины мощности электростанции (ГТПГ) при заданных расчетных условиях, связанных с обеспеченностью технического системами водоснабжения, определяются с учетом положений п. 9.5 настоящих Методических на величину ограничений указаний как сумма сниженных установленной мощности данного оборудования, имеющих более высокий приоритет учета, разностей номинальных мощностей и определенных в п.п. 11.2.2.29 или 11.2.2.30 настоящих Методических указаний величин располагаемых мощностей каждой из турбин электростанции (ГТПГ).

11.2.3. Алгоритм расчета для электростанций с прямоточной схемой и рециркуляцией при наличии ограничений по температуре сбросной воды.

11.2.3.1. Принципы и подходы к определению исходных данных и расчетам обеспеченности электрической мощности электростанций с прямоточной схемой и рециркуляцией при наличии ограничений по температуре сбросной воды аналогичны рассмотренным в п. 11.2.2 настоящих Методических указаний принципам для электростанций с прямоточной схемой с некоторыми отличиями, перечисленными в приведенных ниже пунктах.

11.2.3.2. Принципиальная схема технического водоснабжения представлена на рис. 11.11.



Рис. 11.11. Принципиальная схема технического водоснабжения

11.2.3.3. Величина расхода заборной воды при отсутствии ограничений по пропускной способности каналов (трубопроводов), производительности насосов, объемам забора воды определяется как сумма номинальных расходов конденсаторов согласно паспортным данным и расхода на МГО за вычетом величины возврата воды по каналу рециркуляции.

11.2.3.4. Для определения предельно допустимых температур воды на выходе из конденсаторов (параметр $T_{вых}$ на рис. 11.11) по условиям обеспечения требований по соблюдению температурного режима в контрольном створе необходимо записать уравнения теплового баланса для точек 1,2 (рис. 11.11).

Точка 1:
$$Q_{\kappa o \mu \delta} \cdot T_{\varrho x} = Q^{'}_{\beta a \delta} \cdot T_{\varrho} + Q_{\varrho} \cdot T_{\varrho b \iota x}$$
 (11.40)

где
$$Q'_{3a\delta} = Q_{3a\delta} - Q_{M\Gamma O} = Q_{\text{конд}} - Q_{\mathfrak{u}}$$
 (11.41)

Точка 2:
$$\mathbf{g} \cdot Q_{mp} \cdot T_p + Q_{c\delta p} \cdot T_{s\omega x} = (\mathbf{g} \cdot Q_{mp} + Q_{c\delta p}) \cdot T_{umoz}$$
, (11.42)

где д - коэффициент смешения, определяемый согласно п. 11.2.2.14;

транзитный расход в реке Q_{mp} определяется по формуле (11.24); расход сбросной воды определяется по формуле:

$$Q_{c\delta p} = k_{nom} (Q_{c\delta p} + Q_{MTO}), \qquad (11.43)$$

где
$$Q_{c\delta\rho} = Q_{\kappa o H \partial} - Q_{\mu}$$
 (11.44)

 k_{nom} — коэффициент, учитывающий потери воды в сбросном канале, равный 0,995 для открытых сбросных каналов длиной более 2 км, и 1 — для всех остальных и закрытых трубопроводов.

11.2.3.5. Из уравнения (11.42) для точки 2 выразим величину $T_{\text{вых}}$ средневзвешенной температуры охлаждающей воды на выходе из конденсаторов:

$$T_{\text{\tiny GbJX}} = \frac{(g \cdot Q_{mp} + Q_{c\delta p}) \cdot T_{\text{\tiny umoc}} - g \cdot Q_{mp} \cdot T_{p}}{Q_{c\delta p}}, \tag{11.45}$$

где
$$T_{umoz} = T_p + dT_{\partial on}$$
; (11.46)

где Q_{u} – расход в канале рециркуляции

11.2.3.6. C учетом формул (11.41), (11.43)-(11.46) выражение (11.42) примет следующий вид:

$$T_{gbbx} = \frac{(g \cdot Q_{mp} + Q_{c\delta p}) \cdot T_{umoc} - g \cdot Q_{mp} \cdot T_{p}}{Q_{c\delta p}} =$$

$$= \frac{(g \cdot Q_{mp} + Q_{c\delta p}) \cdot (T_{p} + dT_{\delta on}) - g \cdot Q_{mp} \cdot T_{p}}{Q_{c\delta p}} =$$

$$= \frac{g \cdot Q_{mp} \cdot T_{p} + g \cdot Q_{mp} \cdot dT_{\delta on} + Q_{c\delta p} \cdot dT_{\delta on} + Q_{c\delta p} \cdot T_{p} - g \cdot Q_{mp} \cdot T_{p}}{Q_{c\delta p}} =$$

$$= \frac{g \cdot Q_{mp} \cdot dT_{\delta on} + Q_{c\delta p} \cdot (dT_{\delta on} + T_{p})}{Q_{c\delta p}} =$$

$$= \frac{g \cdot Q_{mp} \cdot dT_{\delta on} + k_{nom} \cdot Q_{s\delta o} \cdot (dT_{\delta on} + T_{p})}{k_{nom} \cdot Q_{s\delta o}} =$$

$$= \frac{g \cdot (Q_{p} - Q_{s\delta o}) \cdot dT_{\delta on}}{k_{nom} \cdot Q_{s\delta o}} + dT_{\delta on} + T_{p}$$

$$= \frac{g \cdot (Q_{p} - Q_{s\delta o}) \cdot dT_{\delta on}}{k_{nom} \cdot Q_{s\delta o}} + dT_{\delta on} + T_{p}$$

$$= \frac{(11.47)$$

11.2.3.7. Из выражения для точки 1 выразим величину T_{ex} :

$$T_{ex} = \frac{Q^{'}_{3a\delta} \cdot T_{p} + Q_{u} \cdot T_{eblx}}{Q_{\kappa OHO}} = \frac{Q^{'}_{3a\delta} \cdot T_{p} + (Q_{\kappa OHD} - Q^{'}_{3a\delta}) \cdot T_{eblx}}{Q_{\kappa OHO}} \quad (11.48)$$

С другой стороны величина средневзвешенного нагрева охлаждающей воды в конденсаторах может быть выражена как разность средневзвешенной температуры на выходе из конденсаторов и температуры на входе:

$$\Delta t_k = T_{\text{\tiny GbLX}} - T_{\text{\tiny GX}} \tag{11.49}$$

откуда
$$T_{ex} = T_{eblx} - \Delta t_k$$
 (11.50)

11.2.3.8. С учетом формулы (11.50) выражение (11.48) примет следующий вид:

$$T_{\text{вых}} - \Delta t_k = \frac{Q_{3a\delta} \cdot T_p + (Q_{\text{кон}\partial} - Q_{3a\delta}) \cdot T_{\text{вых}}}{Q_{\text{кон}\partial}} = \frac{Q_{3a\delta} \cdot (T_p - T_{\text{выx}}) + Q_{\text{кон}\partial} \cdot T_{\text{выx}}}{Q_{\text{кон}\partial}}$$

$$= \frac{Q_{3a\delta} \cdot (T_p - T_{\text{выx}}) + Q_{\text{кон}\partial} \cdot T_{\text{выx}}}{Q_{\text{кон}\partial}}$$
(11.51)

11.2.3.9. Выражаем из формулы (11.51) величину допустимого средневзвешенного нагрева воды в конденсаторах:

$$\Delta t_{k} = \frac{Q_{\kappa O H \partial} \cdot T_{g \omega x} + Q_{3 a \delta} \cdot (T_{g \omega x} - T_{p}) - Q_{\kappa O H \partial} \cdot T_{g \omega x}}{Q_{\kappa O H \partial}} = \frac{Q_{3 a \delta} \cdot (T_{g \omega x} - T_{p})}{Q_{\kappa O H \partial}} \quad (11.52)$$

11.2.3.10. Подставив выражение из формулы (11.47) в формулу (11.52) получим окончательно

$$\Delta t_{k} = \frac{Q'_{3a\delta} \cdot \left(\frac{g \cdot (Q_{p} - Q_{3a\delta}) \cdot dT_{\partial on}}{k_{nom} \cdot Q_{3a\delta}} + dT_{\partial on} + T_{p} - T_{p}\right)}{Q_{\kappa on\partial}} =$$

$$= \frac{Q'_{3a\delta} \cdot dT_{\partial on} \cdot (g \cdot Q_{p} - g \cdot Q_{3a\delta} + k_{nom} \cdot Q_{3a\delta})}{Q_{\kappa on\partial} \cdot k_{nom} \cdot Q_{3a\delta}} =$$

$$= \frac{(Q_{3a\delta} - Q_{M\Gamma O}) \cdot dT_{\partial on} \cdot (g \cdot Q_{p} - Q_{3a\delta} (g - k_{nom}))}{Q_{\kappa on\partial} \cdot k_{nom} \cdot Q_{3a\delta}}$$

$$(11.53)$$

11.2.3.9. В случае забора воды на МГО в точке 4 (рис. 11.11) по результатам аналогичных выкладок выражение (11.53) будет иметь следующий вид:

$$\Delta t_k = \frac{dT_{oon} \cdot (g \cdot Q_p - Q_{3a6} (g - k_{nom}))}{Q_{\kappa o \mu \delta} \cdot k_{nom}}$$
(11.54)

11.2.3.10. Дальнейший расчет обеспеченности электрической мощности системами технического водоснабжения аналогичен п.п. 11.2.2.23-11.2.2.31 настоящих Методических указаний.

12. Определение электрической мощности турбин различных типов по диаграммам режимов.

12.1. Работа с диаграммой режимов конденсационной турбины типа «К».

Диаграмма режимов турбины типа К представляет собой прямо пропорциональную зависимость между расходом пара в голову D_0 , т/ч (расходом тепла на турбину Q_0 , Гкал/ч) и электрической мощности турбины $N_{\rm T}$, МВт которая может задаваться как графически, так и аналитически с

помощью уравнений (рис. 12.1). Линия $q_{\scriptscriptstyle T}$ соответствует удельному расходу тепла на турбину.

Характеристики могут быть построены для двух вариантов исходных условий: при постоянных расходе и температуре охлаждающей воды на входе в конденсатор, либо при постоянном давлении в конденсаторе.

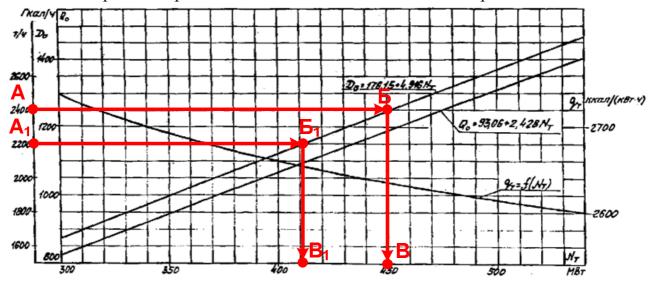


Рис. 12.1 Диаграмма режимов турбины типа К (на примере турбины К-500-240).

При отсутствии технических ограничений турбины и параметрах ее работы, соответствующих номинальным, при которых была построена диаграмма режимов, изменение электрической мощности турбины может произойти только в случае изменения расхода пара в голову турбины. Так, при уменьшении расхода пара в голову турбины с 2400 до 2200 т/ч электрическая мощность турбины снизится на В-В₁ = 450−411 ≈ 40МВт или:

$$\Delta N_{\rm T} = \frac{\Delta D_0}{4.916} = \frac{2400 - 2200}{4.916} \approx 40 \text{MBt}.$$

При отличии фактических параметров работы турбины от принятых при построении диаграммы режимов с помощью поправочных кривых вводятся поправки к определенному по диаграмме значению электрической мощности турбины.

12.2. Работа с диаграммой режимов турбины с противодавлением типа «Р».

Диаграмма режимов работы турбины типа «Р» представляет совокупность прямо пропорциональных зависимостей между электрической мощностью и расходом пара в голову турбины или расходом пара на выходе из последней ступени при определенных значениях противодавления (рис. 12.2), задаваемую как графически, так и аналитически с помощью уравнений.

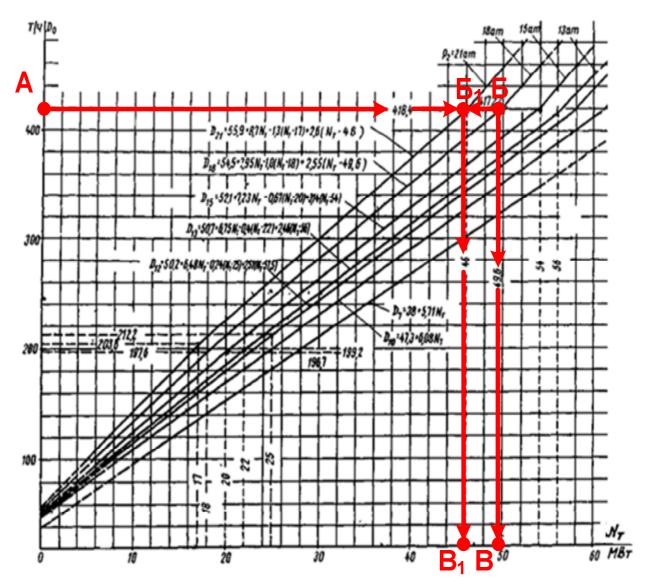


Рис. 12.2 Диаграмма режимов турбины типа «Р» (на примере турбины Р-50-130).

Определение электрической мощности турбины осуществляется по аналогии с турбиной типа К (линия А-Б-В). При одном и том же значении противодавления изменение электрической мощности также прямо пропорционально изменению расхода пара в голову турбины.

Расход пара в голову турбины определяется по зависимости данного параметра от расхода пара на выходе из последней ступени, вид которой для турбины типа P-100-130/15 представлен на рис. 12.3.

При увеличении противодавления мощность турбины снижается. Например, при увеличении противодавления с 18 до 21 ат снижение мощности составит:

B - B₁ =
$$49.6 - 46 \approx 3.6$$
MBT.

Снижение также можно определить по аналитическим зависимостям $N_{\scriptscriptstyle T} = f\left(D_{\scriptscriptstyle 0}\right)$ для каждого значения противодавления.

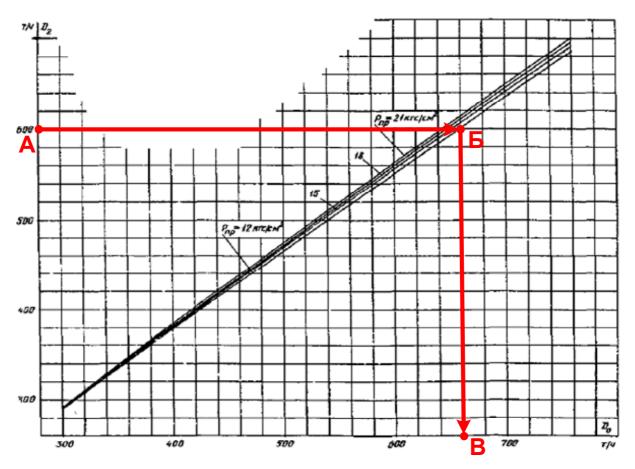


Рис. 12.3 Зависимость расхода пара в голову турбины от расхода пара на выходе из последней ступени (на примере турбины P-100-130/15).

При отклонении фактических параметров работы турбины от номинальных, принятых при построении диаграммы режимов, необходимо внести соответствующие поправки к величине мощности.

Так, например, при отклонении температуры возвращаемого конденсата от принятой при построении диаграммы необходимо по его фактической температуре и расходу пара противодавления определить расход пара на производство, который бы имел место при номинальной температуре возвращаемого конденсата. По определенному «фиктивному» расходу и заданному давлению пара противодавления по диаграмме режимов определяется фактическая электрическая мощность турбины.

12.3. Работа с диаграммами режимов турбин с регулируемыми теплофикационными отборами (типа «Т»).

Диаграмма режимов работы турбины типа «Т» представляет собой совокупность линий, характеризующих взаимную зависимость между теплофикационной нагрузкой $Q_{\rm T}$, Γ кал/ч (т/ч), расходом пара в голову турбины $D_{\rm 0}$, т/ч и ее электрической мощностью $N_{\rm T}$, MВт при различных значениях давления в нижнем $p_{\rm TH}$ (при одноступенчатом подогреве сетевой

воды) или верхнем p_{TB} (при двух- и трехступенчатом подогреве) теплофикационных отборах (рис. 12.4), а также при различных значения температуры прямой сетевой воды. Расположение квадрантов и осей может быть отлично.

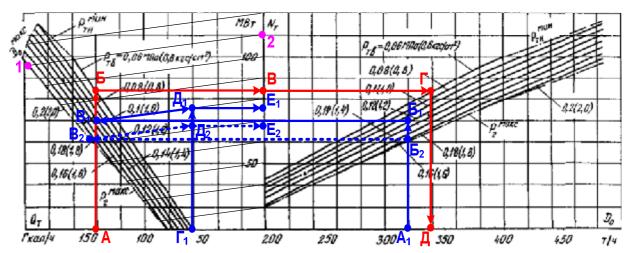


Рис. 12.4. Диаграмма режимов турбины типа «Т», вариант 1 (на примере турбины T-100/120-130).

Существует два характерных режима работы турбины типа «Т»:

- по тепловому графику при заданной теплофикационной нагрузке с минимальным вентиляционным пропуском пара в конденсатор;
- по электрическому графику при заданной теплофикационной нагрузки и произвольных значениях электрической мощности турбины (и соответствующего расхода в голову).

Вспомогательная линия 1-2 на рис. 12.4 и параллельные ей соответствуют постоянным значениям электрической мощности турбины при работе по электрическому графику.

Для определения максимально возможной мощности турбины необходимо использовать режим работы по электрическому графику.

Исходными данными для ее определения являются:

- теплофикационная нагрузка $Q_{\scriptscriptstyle T}$ (в нижеследующем примере 50 Гкал/ч, точка Γ_1);
- давление в теплофикационном отборе (в примере давление в нижнем теплофикационном отборе при одноступенчатом подогреве сетевой воды $p_{\rm TH} = 1.2~\kappa zc/cm^2$);
- расход пара в голову турбины.

Расход пара в голову определяется либо по результатам расчетов величины его ограничений, обусловленных работой системы технического водоснабжения, ограничениями паропроизводительности котельных агрегатов и т.п., либо, при отсутствии подобных ограничений, в первом приближении принимается равным максимальному при заданном значении теплофикационной нагрузки.

В примере расход определен из условий работы системы технического водоснабжения и составляет 320 т/ч, точка A_1 .

Чтобы определить максимально возможную мощность турбины при определенных выше исходных данных необходимо из точки A_1 восстановить перпендикуляр до линии требуемого давления в нижнем теплофикационном отборе $p_{\text{тн}} = 1,2 \ \kappa z c / c M^2$ (точка B_1), откуда параллельно оси расхода пара в голову дойти до точки пересечения с линией соответствующего давления в левом квадранте диаграммы, ограниченном осями Q_T и N_T (точка B_1). Из точки B_1 , двигаясь параллельно вспомогательной линии постоянной мощности необходимо определить точку A_1 пересечения с заданной теплофикационной нагрузкой (перпендикуляр из точки B_1), откуда опустить перпендикуляр на ось мощности турбины (точка B_1).

Таким образом, при теплофикационной нагрузке 50 Гкал/ч, давлении в нижнем теплофикационном отборе $p_{\rm TH}=1,2~\kappa zc/cm^2$ и расходе пара в голову турбины 320 т/ч максимально возможная мощность турбины составит 76 MBт.

Не всякое сочетание параметров работы турбины технически реализуемо. Реализуемость режима работы определяется общим паровым балансом турбины. Так, например, при заданных выше значениях расхода пара в голову 320 т/ч, давлении $p_{\text{TH}} = 1,2 \ \kappa z c / c m^2$, но большей теплофикационной нагрузке (155 Гкал/ч), точка B_1 окажется правее точки Γ_1 , точки пересечения Π_1 не будет, то есть режим при данных условиях окажется несовместным.

Для возвращения в зону технически реализуемых режимов необходимо либо увеличить расход пара в голову турбины, если это возможно, либо снизить теплофикационную нагрузку, перераспределив ее между другими турбинами.

Увеличение давления в теплофикационном отборе при прочих равных параметрах приведет к снижению максимально возможной мощности турбины (линия A_1 - B_2 - B_2 -(Γ_1)- Π_2 - B_2). Мощность турбины в новом режиме составит 50 MBT, снижение — E_1 - E_2 =76-68=8 MBT соответственно. Верна и обратная зависимость.

В случае задания вместо величины расхода в голову значения электрической мощности, определение величины D_0 осуществляется в обратном порядке по алгоритму E_1 - Γ_1 - Λ_1 - Γ_1 - Λ_1 .

Имеет место и другой вид диаграммы режимов, состоящий из нескольких диаграмм, построенных для различных значений давления пара в нижнем (верхнем) теплофикационных отборах, содержащих совокупность линий, характеризующих прямо пропорциональные зависимости между электрической мощностью и расходом пара в голову турбины при различных значениях теплофикационной нагрузки (рис. 12.5).

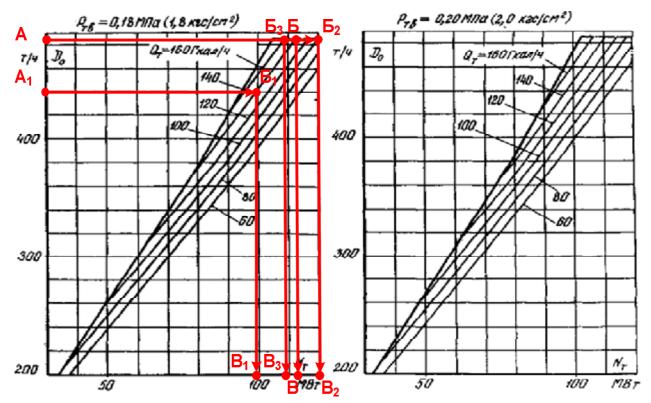


Рис. 12.5. Диаграмма режимов турбины типа «Т», вариант 2 (на примере турбины Т-100/120-130).

Пусть в исходном режиме турбина работала при следующих пара метрах: $p_{\rm TB} = 1.8~\kappa zc/cm^2$, $Q_{\rm T} = 140~\Gamma$ кал/ч, расход пара в голову — максимальный $D_{\rm 0} = 484$ т/ч. Максимально возможная мощность турбины в данном случае составит 113 МВт (линия A-Б-В на рис. 12.5).

Снижение расхода пара, например до 440 т/ч, приведет к уменьшению мощности турбины. Мощность турбины в новом режиме составит 99 МВт (линия A_1 - B_1 - B_1 на рис. 12.5), снижение – B- B_1 =113-99=14 МВт соответственно. Верна и обратная зависимость.

Увеличение теплофикационной нагрузки, например до 160 Гкал/ч, приведет к уменьшению мощности турбины. Мощность турбины в новом режиме составит 109 МВт (линия A- B_3 - B_3 на рис.12.5), снижение — B- B_3 =113-109=4 МВт соответственно. Верна и обратная зависимость (линия A- B_2 - B_2 на рис. 12.5).

Аналогичные зависимости изменения параметров можно получить, используя диаграмму режимов, представленную на рис. 12.4.

Режим работы турбины по тепловому графику может быть использован для определения ее технологического минимума по отпуску тепла в теплофикационные отборы (рис. 12.4).

Так при теплофикационной нагрузке 150 Гкал/ч и давлении пара в нижнем теплофикационном отборе $0.6 \ \kappa c c / c m^2$ электрическая мощность турбины составит 84 МВт, расход пара в голову — 340 т/ч (линия А-Б-В-Г на рис. 12.4). Расход пара в конденсатор при этом будет *минимальным*.

При отличии фактических параметров работы турбины от номинальных принятых при построении диаграммы режимов с помощью поправочных кривых определяются поправки к полученному значению электрической мощности турбины.

Конденсационный режим работы турбины «Т» описывается диаграммой, аналогичной диаграмме режимов турбины типа «К».

12.4. Работа турбин типа «К» в режиме ухудшенного вакуума. Работа турбин с регулируемыми теплофикационными отборами (типа «Т») на встроенном пучке конденсатора.

Перевод турбины типа К в режим ухудшенного вакуума фактически соответствует ее переводу в режим работы с противодавлением (рис. 12.6). Турбины, для которых заводом-изготовителем предусмотрена возможность работы в режиме ухудшенного вакуума, должны быть снабжены соответствующими экспериментальными или расчетными зависимостями.

При отсутствии таких зависимостей необходимо проведение расчетов, корректирующих диаграмму режимов с внесением соответствующих изменений в НТД электростанции.

Снижение мощности при переводе турбины в режим ухудшенного вакуума может быть определено при неизменном расходе в голову турбины как разность величин мощностей, полученных по характеристикам, построенным при режимах с нормальным и ухудшенным вакуумом.

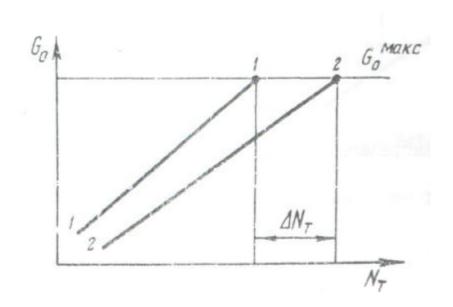


Рис. 12.6. Зависимость электрической мощности турбины типа «К» от расхода пара в голову при нормальном (линия 2-2) и ухудшенном (линия 1-1) вакууме, ΔN — снижение мощности турбины.

Турбины типа «Т», для которых предусмотрена возможность работы на встроенном пучке конденсатора, должны быть снабжены соответствующими

диаграммами режимов работы при трехступенчатом подогреве сетевой воды, аналогичными диаграммам режимов при двухступенчатом подогреве.

12.5. Работа с диаграммой режимов турбины с регулируемыми производственным и теплофикационным отборами пара (типа «ПТ»).

Диаграмма режимов турбины типа «ПТ» состоит из двух полей. Поле в верхнем квадранте диаграммы (рис. 12.7) характеризует работу «фиктивной» турбины, имеющей один производственный отбор. Поле в нижнем квадранте позволяет определить поправку к мощности «фиктивной» турбины при наличии теплофикационного отбора.

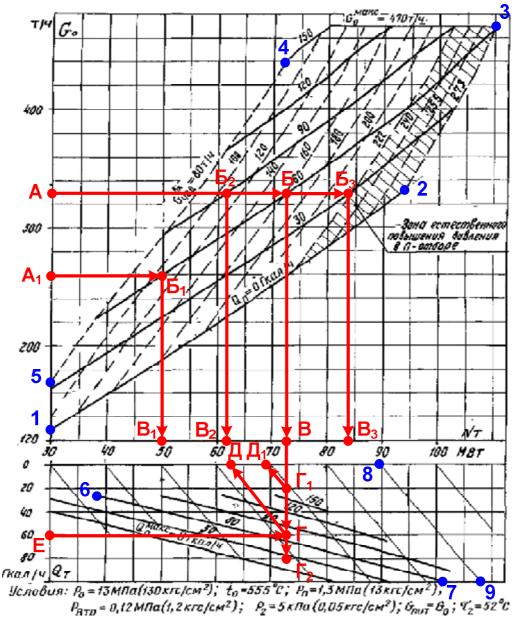


Рис. 12.7. Диаграмма режимов турбины типа ПТ (на примере турбины ПТ- 80/100-130).

Нижней границей диаграммы в верхнем квадранте служит режим нулевого производственного отбора $Q_{\Pi}=0$ Гкал/ч, что соответствует расходу пара $D_{\Pi}=0$ т/ч, (линия 1-2), левой границей — минимальный пропуск пара через ЧСД (линия 4-5), правой — максимально возможный пропуск пара через ЧСД (линия 2-3). Линии, параллельные 1-2, соответствуют постоянным значениям отпуска тепла (постоянным значениям расхода пара) в производственный отбор, параллельные 4-5 и 2-3 — пропуску пара в ЧСД. Верхняя часть диаграммы ограничена максимально возможным расходом пара в голову турбины G_0^{MAKC} .

Для того, чтобы определить электрическую мощность турбины в том или ином режиме, необходимы следующие исходные данные:

- расход пара в производственный отбор;
- расход пара в теплофикационный отбор (либо тепловая нагрузка теплофикационного отбора);
- расход пара в голову турбины.

Расход пара в голову определяется либо в результате расчета величины его ограничений, обусловленных, например, работой системы технического водоснабжения, ограничениями паропроизводительности котельных агрегатов и т.п., либо, при отсутствии подобных ограничений, в первом приближении принимается равным максимальному при заданном значении производственного отбора (включая зону естественного повышения давления в П-отборе). В примере расход определен из условий работы системы технического водоснабжения и составляет 330 т/ч.

В случае отсутствия теплофикационного отбора ($Q_T = 0$, $D_T = 0$) определение электрической мощности турбины ведется по верхнему квадранту диаграммы (рис. 12.7): находится точка Б пересечения линий, соответствующих заданным расходу пара в голову турбины 330 т/ч (точка A) и соответствующему отпуску тепла 60 Гкал/ч в производственный отбор, из которой опускается перпендикуляр на ось мощности (точка B). Мощность турбины в данном случае равна 73 МВт.

Изменение электрической мощности турбины может произойти в следующих случаях:

- при ограничении паропроизводительности котла и, как следствие, снижения расхода пара в голову турбины, например, до 260 т/ч при условии сохранения требуемой нагрузки производственного отбора 60 Гкал/ч произойдет снижение мощности, определяемое аналогично рассмотренному выше примеру по линии A₁-Б₁-B₁ (рис. 12.7). Мощность турбины в новом режиме составит 50 МВт, снижение В-В₁=73-50=23 МВт соответственно.
- при изменении отпуска тепла в регулируемые отборы.

Снижение мощности при снижении отборов имеет место лишь в том случае, когда в исходном режиме турбина работала с максимальным расходом пара в отсек (цилиндр), следующий за

камерой соответствующего производственного или теплофикационного отбора.

Если нагрузка производственного отбора увеличивается, и отсутствует возможность увеличения расхода пара в голову турбины, то мощность турбины снижается (линия A- E_2 - B_2 рис.12.7). Мощность турбины в новом режиме составит 62 МВт, снижение — B- E_2 =73-62=11 МВт.

При уменьшении нагрузки производственного отбора, например, до 30 Гкал/ч, и сохранении прежнего расхода пара в голову турбины 330 т/ч увеличится расход пара в ЧСД и конденсатор.

Если это увеличение допустимо по условиям работы, то мощность турбины увеличивается (линия $A-B-B_3-B_3$).

Линия 8-9 и параллельные ей в нижнем квадранте диаграммы соответствуют постоянным значениям электрической мощности турбины. При наличии теплофикационного отбора электрическая мощность турбины при прочих равных условиях уменьшается.

Для определения снижения мощности необходимо из точки Б опустить перпендикуляр до линии заданного значения тепловой нагрузки (точка Е) и по линии постоянной мощности подняться до оси мощности (точка Д). Мощность турбины в новом режиме составит 63 МВт, снижение — В-Д=73-63=10 МВт.

По мере снижения тепловой нагрузки теплофикационного отбора при неизменных расходах пара в голову турбины и в производственный отбор электрическая мощность турбины увеличивается (линия A-B- Γ_1 - Π_1 рис. 12.7). Например, при снижении тепловой нагрузки до 20 Γ кал/ч мощность турбины в новом режиме составит 69 MBT, увеличение относительно мощности при исходной нагрузке теплофикационного отбора — Π_1 - Π_2 =69-63=6 MBT.

По мере увеличения теплофикационной нагрузки мощность турбины снижается. При этом необходимо учитывать, что не вся область нижнего квадранта диаграммы технически реализуема.

Линия 6-7 и параллельные ей определяют максимально допустимый расход пара в производственный отбор при той или иной величине нагрузки теплофикационного отбора.

Так, при увеличении нагрузки теплофикационного отбора до 80 Гкал/ч (точка Γ_2) режим работы турбины технически нереализуем, поскольку максимально допустимая нагрузка производственного отбора составляет менее 30 Гкал/ч при необходимости обеспечения заданной величины 60 Гкал/ч.

В случае если в качестве исходных данных заданы нагрузки отборов и электрическая мощность, определение величины расхода в голову турбины осуществляется в обратном порядке по аналогичному алгоритму Е-Д-Г-В-Б-А.

При отличии фактических параметров работы турбины от номинальных, принятых при построении диаграммы режимов, с помощью

поправочных кривых определяются поправки к полученному значению электрической мощности турбины.

Конденсационный режим работы турбины ПТ описывается диаграммой, аналогичной диаграмме режимов турбины типа К.

13. Причины ограничений мощности турбоагрегатов

13.1 Ограничение мощности из-за дефектов оборудования.

13.1.1. Дефекты турбинного оборудования.

Если в процессе эксплуатации выявляются дефекты в работе турбинного оборудования, ограничивающие мощность турбоагрегата, то учитываются только те ограничения, устранение которых возможно только в процессе капитальных ремонтов или реконструкций.

Ограничение мощности определяется результатами натурных испытаний, специальными расчетами, либо заключением заводаизготовителя.

Наиболее характерными ограничивающими мощность дефектами турбинного оборудования могут быть:

- повреждения в проточной части турбины;
- появление низкочастотной вибрации;
- перегрузка упорного подшипника;

Возможность эксплуатации турбин с поврежденной проточной частью определяется заводом-изготовителем, который определяет ограничение мощности.

При удалении единичных рабочих лопаток мощность турбин практически не ограничивается. При снятии целого ряда рабочих лопаток, если не ограничивается расход пара, максимальная мощность снижается на значение мощности, развиваемое этой ступенью. При удалении диафрагмы допустимый расход пара на турбину значительно сокращается, и величина ограничения мощности определяется этим расходом и мощностью удаленной ступени.

В случаях появления опасных низкочастотных вибраций валопровода турбины и при невозможности выполнения мероприятий по ее предотвращению в рассматриваемый период допускается временное ограничение мощности турбины.

Порог мощности, обеспечивающий нормальную эксплуатацию турбины, по согласованию с заводом-изготовителем определяется по результатам натурных испытаний.

Перегрузка упорного подшипника фиксируется штатным температурным контролем упорных колодок. Максимальная мощность турбины определяется максимально допустимыми температурами колодок, уровень которых устанавливается заводом-изготовителем.

Не учитываются ограничения мощности вследствие:

- повышения давления на колодки упорного подшипника из-за заноса проточной части турбины солями;
- повышения температур в отдельных колодках из-за некачественного ремонта подшипника.

Ограничения мощности, связанные с состоянием лопаточного аппарата, износом уплотнений подлежат устранению в ближайший капитальный ремонт. Ограничения мощности, связанные с перегрузкой упорного подшипника из-за конструктивных дефектов турбины (повышенные осевые усилия, малая несущая способность подшипника) также подлежат устранению во время реконструкций и капитальных ремонтов.

В случае невозможности, либо нецелесообразности устранения таких ограничений проводится перемаркировка оборудования на величину указанных технических ограничений.

Длительное ограничение мощности турбоустановки может иметь место при плановом выводе на реконструкцию (на срок более 1 года) вспомогательного оборудования, не имеющего резерва. К таким случаям относятся:

- реконструкция ПВД;
- замена или модернизация питательных турбонасосов;
- реконструкция градирен и т.п.

При отключении ПВД максимальная мощность турбины снижается в соответствии с указаниями завода-изготовителя. При останове питательного насоса мощность энергоблока определяется возможностью оставшегося в работе насоса.

13.1.2. Дефекты в работе котельного оборудования электростанции, ограничивающие мощность турбоагрегатов.

Основными причинами, ограничивающими мощность турбоагрегатов, могут быть:

- снижение паропроизводительности котла;
- снижение температуры свежего пара и пара промперегрева;
- снижение давления свежего пара.

При снижении паропроизводительности котла и выходных параметров пара на длительный период (до реконструкции оборудования, замены барабана котла, паропроводов, перевода на другое топливо и т.п.) ограничение мощности турбины определяется по диаграммам режимов и по поправочным кривым на отклонение параметров от номинальных.

Значительные снижения температур (больше значений, оговоренных в инструкциях и технических условиях) согласовываются с заводом-изготовителем. Если поправочные кривые не охватывают не обходимый диапазон изменения параметров, оценка снижения мощности производится расчетом.

При значительном снижении начального давления пара мощность турбины снижается как из-за снижения пропускной способности турбины, так и за счет снижения располагаемого теплоперепада.

Снижение пропускной способности может быть оценено по формуле:

$$G_0' = G_0^{MAKC} \cdot \frac{p_0'}{p_0} \cdot \sqrt{\frac{T_0}{T_0'}},$$
 (13.1)

где $G_0^{\text{макс}}$ — максимальный расход пара на турбину при номинальных значениях давления p_0 и температуры T_0 перед турбиной, τ/τ ;

 $p_0^{'}$ и $T_0^{'}$ – сниженные параметры пара перед турбиной, МПа и 0 С.

Снижение располагаемого теплоперепада определяется по h-s — диаграмме.

Оценка снижения мощности конденсационных и противодавленческих турбин может быть произведена по формуле:

$$N_{MAKC}^{'} = N_{MAKC} \cdot \frac{G_0^{'}}{G_0^{MAKC}} \cdot \frac{H_0^{'}}{H_0},$$

где H_0 и $H_0^{'}$ — располагаемые теплоперепады при номинальных и пониженных параметрах свежего пара.

Для турбин с регулируемыми отборами пара требуется более детальный расчет, корректирующий диаграмму режимов.

13.1.3. Дефекты в работе генераторов и главных трансформаторов, ограничивающие мощность турбоагрегатов.

При наличии каких-либо дефектов в генераторах и трансформаторах, ограничивающих их активную мощность, и устранение которых требует проведения капитального ремонта или реконструкции, располагаемая мощность турбоагрегатов (энергоблоков) определяется с учетом этих ограничений.

13.2. Ограничение мощности, связанные с отклонением от проекта.

- 13.2.1. К изменениям проектных решений, которые могут привести к снижению располагаемой электрической мощности, относятся:
 - организация дополнительных теплофикационных и промышленных отборов пара от турбин;
 - перевод конденсационных турбин на работу с ухудшенным вакуумом с целью использования тепла отработавшего пара для целей теплофикации (в случаях если перевод в данный режим обусловлен технической необходимостью (особенности тепловой схемы, отсутствие возможности обеспечения заявленного уровня теплопотребления от других источников (отборов, ПВК), что подтверждается наличием обосновывающих документов, заключений и расчетов);
 - повышение параметров промышленного отбора или противодавления у турбин типа «Р»;

Во всех перечисленных случаях снижение электрической мощности связано с уменьшением конденсационной выработки и определяется экспериментальным и расчетным путем.

- 13.2.2. При переводе турбин в режим ухудшенного вакуума снижение мощности определяется в зависимости от давления отработавшего пара по существующим характеристикам в НТД электростанции или технических условиях завода-изготовителя.
- 13.2.3. Дополнительный отбор пара из нерегулируемых отборов для собственных нужд электростанции или для отпуска тепла на сторону приводит к снижению мощности, которую обычно указывает завод в технических условиях на поставку турбин или в специальных письмах. Данное ограничение учитывается только при отсутствии возможности обеспечения отпуска необходимого объема тепла от других источников теплоснабжения электростанции, за исключением РОУ и БРОУ, подключенных к паропроводам свежего пара;
- 13.2.4. Ограничение мощности из-за недостатка теплового потребления на турбинах типа «Р».

Турбины типа «Р» работают по чисто теплофикационному режиму и их электрическая мощность полностью зависит от тепловой нагрузки. Располагаемая электрическая мощность этих турбин определяется по диаграмме режимов для конкретных условий работы по отпуску пара с противодавлением при заданном давлении отработавшего пара.

Если на электростанции параллельно работают турбины типа « Π » и « Π Т» с отборами, то располагаемая мощность турбины типа «P» определяется с учетом возможного замещения нагрузки производственного отбора паром противодавления.

В режиме турбин «Р» фактически работают конденсационные турбины, переведенные на ухудшенный вакуум, и турбины типа «Т» с подогревом сетевой или подпиточной воды во встроенном пучке конденсатора.

14. Причины ограничений паропроизводительности котлоагрегатов

14.1. Максимальная производительность топливоподачи.

14.1.1. Основной причиной возникновения ограничений нагрузок ТЭС по условиям работы топливоподачи является ее недостаточная производительность.

При проектных показателях качества топлива и соблюдении правил технической эксплуатации ограничения производительности топливоподачи отсутствуют в связи с резервированием линии топливоподачи.

14.1.2. На изменение производительности топливоподачи при ухудшении качественных характеристик твердого топлива оказывают влияние

следующие факторы:

- снижение теплоты сгорания топлива из-за повышения зольности и влажности, приводящее к необходимости увеличить расход топлива в котлы;
- ухудшение сыпучих свойств топлива:
 - из-за повышения зольности и влажности, приводящее к замазыванию (залипанию) разгружаемых вагонов, механизмов и пересыпных коробов тракта топливоподачи, зависаниям и слеживанию топлива в бункерах;
 - из-за смерзания в вагонах и на складах в холодное время года;
- 14.1.3. Влияние ухудшения сыпучих свойств топлива на работу отдельных узлов топливоподачи выражается в:
 - затрудненности выгрузки в зимний период смерзшегося в вагонах топлива и связанном с эти увеличением времени простоя вагонов (размораживание, рыхление, зачистка вагонов);
 - смерзании топлива в зимний период в складских штабелях;
 - налипании топлива на решетки и стенки приемных бункеров разгрузочных устройств, сводообразовании в бункерах;
 - возникновении завалов на решетках разгрузочных устройств;
 - замазывании ленты и роликов ленточных питателей под разгрузочным устройством и за бункерами складов и лотков качающихся питателей;
 - налипании топлива на стенки пересыпных коробов и поверхность шиберов и связанном с этим сужением проходного сечения коробов;
 - замазывании решеток грохотов, приводящем к снижению площади рассеивания топлива, и соответственно производительности грохота;
 - замазывании конвейерной ленты, барабанов, роликов, очистных устройств, приводящем к нарушениям в режиме работы конвейера (пробуксовка ленты, увеличение нагрузок на подшипниковые узлы).
 - отложении топлива на стенках бункеров сырого угля, что приводит к сокращению их рабочего объема;

Наличие по тракту топливоподачи специальных устройств частично или полностью устраняет влияние ухудшения качества топлива или значительно сокращает простои топливоподачи по этой причине.

- 14.1.4. Количественную оценку изменения производительности топливоподачи следует выполнять в следующем порядке:
 - 14.1.4.1. Определяется фактическая максимальная производительность одной нитки топливоподачи по формуле:

$$Q_{MAKC} = 3.6 \cdot q \cdot V, \text{ T/Y}$$
 (14.1)

где q — максимальная нагрузка топлива на погонный метр длины ленты конвейера, имеющего наибольший угол наклона, кг/м;

V – скорость ленты конвейера, м/с.

Максимальная погонная нагрузка определяется опытным путем. При отсутствии данных по измерению погонной загрузки возможно

определение теоретической максимальной производительности конвейера по формуле:

$$Q_{MAKC} = B^2 \cdot g \cdot K_{II} \cdot V \cdot K_b , \text{ T/Y}$$
(14.2)

где B — ширина ленты, м;

g — насыпная плотность топлива, т/м²;

V – скорость ленты, м/с;

 K_{II} — коэффициент площади сечения топлива на ленте. При угле наклона боковых роликов конвейера $20^{\circ}~K_{II} = 300$;

 K_b — коэффициент уменьшения сечения топлива на наклонном конвейере. При угле наклона конвейера $16\text{-}20^\circ~K_b=0.9$.

14.1.4.2. Определяется расчетная производительность топливоподачи по формуле:

$$Q_P = Q_{MAKC} \cdot \frac{K_{O.\Gamma}}{K_H}, \text{ T/Y}$$
 (14.3)

где Q_{MAKC} — максимальная производительность топливоподачи, определенная по формулам (14.1) или (14.2), т/ч;

 K_H — коэффициент неравномерности загрузки конвейеров, равный 1,1-1,5 в зависимости от способа загрузки конвейера, меньшее значение принимается при равномерной загрузке питателем;

 $K_{O,\Gamma}$ – коэффициент оперативной готовности топливоподачи.

Коэффициент оперативной готовности топливоподачи определяется как произведение коэффициентов готовности отдельных узлов, входящих в одну нитку топливоподачи (вагоноопрокидыватель – K_{Γ}^{B} , питатели – K_{Γ}^{Π} , конвейеры – $K_{\Gamma}^{K_{\Gamma}}$, дробилки – K_{Γ}^{Π}):

$$K_{O\Gamma} = K_{\Gamma}^{K_1} \cdot K_{\Gamma}^{K_2} \cdot K_{\Gamma}^{K_3} \cdot \dots \cdot K_{\Gamma}^{B} \cdot K_{\Gamma}^{\Pi} \cdot K_{\Gamma}^{\Pi}$$

$$(14.4)$$

Коэффициенты готовности принимаются по данным заводов-изготовителей или нормативным документам.

В случае невозможности обеспечения данных значений коэффициента готовности приводятся его фактическое значение с одновременным указанием мероприятий, направленных на его повышение.

Фактические коэффициенты оперативной готовности оборудования (исходя из плановой работы конвейера в течение всего календарного времени) определяются по формуле:

$$K_{O\Gamma} = \frac{T_{KAJI} - T_{OTK} - T_{IIJI.PEM}}{T_{KAJI}},$$
(14.5)

где T_{KAJI} — календарное время за месяц, часов;

 $T_{\it отк}$ — продолжительность простоя оборудования по причине отказа в течение месяца, часов;

 $T_{\mbox{\tiny ПЛ.PEM}}$ — продолжительность плановых ремонтов и технического обслуживания оборудования за месяц.

При определении фактических значений коэффициентов оперативной готовности оборудования пересыпные короба включать в состав загрузочного устройства соответствующего конвейера.

Полученная формуле 14.1.4.3. ПО (14.3)расчетная производительность одной линии топливоподачи сравнивается с часовой потребностью натурального топлива на все котлы при номинальной нагрузке. Превышение часовой потребности топлива расчетной производительности топливоподачи является фактором возможных ограничений В обеспечении котлов топливом, соответственно паропроизводительности.

Небольшие (до 10%) и кратковременные дефициты производительности топливоподачи могут быть компенсированы одновременным включением второй (резервной) линии.

14.1.4.4. В случае, если основным фактором, определяющим ограничения нагрузки, является разгрузочное устройство с вагоноопрокидывателем, определяется фактическая производительность вагоноопрокидывателя по формуле:

$$Q_{BO} = n \cdot G, \text{ T/Y} \tag{14.6}$$

где n — максимальное количество опрокидываний в час;

G – грузоподъемность железнодорожных вагонов, т.

Фактическое количество опрокидываний в час определяется с учетом факторов, перечисленных в п. 14.1.3.

- 14.1.4.5. Расчетная производительность топливоподачи, учитываемая при расчете ограничений, определяется как минимальное из значений, полученных в п. 14.1.4.4. и 14.1.4.2.
- 14.1.5. Возможные мероприятия по снижению ограничений, связанных со снижением производительности топливоподачи вследствие ухудшения качества топлива, состоят в:
 - установке размораживающих устройств (тепляков), буро- и виброрыхлительных машин, дробильно-фрезерных машин для ускорения выгрузки смерзшегося топлива;
 - установке дробильно-фрезерных машин для дробления кусков топлива на решетках разгрузочных устройств;
 - устройстве обогрева, облицовке, а также установке вибраторов на стенках приемных бункеров и пересыпных коробов тракта топливоподачи, направленных на снижение замазывания их топливом;
 - реконструкции пересыпных коробов и бункеров, направленной на ликвидацию застойных зон;
 - установке более эффективных очистных устройств конвейерной ленты.

14.2. Недостаток производительности тяго-дутьевого оборудования.

14.2.1. Ограничение производительности котла при ухудшении качества

топлива (росте его влажности и зольности) может быть вызвано следующими причинами:

- недостатком тяги вследствие достижения предельной производительности дымососа;
- нехваткой напора вентилятора в связи с увеличением сопротивления систем пылеприготовления при росте их производительности.
- 14.2.2. Снижение паропроизводительности котла из-за нехватки тяги
 - 14.2.2.1. Снижение паропроизводительности котла из-за нехватки тяги обусловлено:
 - увеличением расхода газов или сопротивления, газового тракта котла из-за его загрязнения (заноса);
 - увеличением температуры и объема уходящих газов и снижением располагаемого напора дымососа;
 - 14.2.2.2. Увеличение расхода газов может быть вызвано следующим:
 - увеличением приведенной влажности топлива $W^{\Pi P}$ при ухудшении его качества;
 - увеличением присосов в газовый тракт котла.
 - 14.2.2.3. Ограничение производительности дымососа вызывается двумя причинами:
 - превышением сопротивления газового тракта над располагаемым напором дымососа;
 - превышением требуемой мощности электродвигателя дымососа над его номинальной мощностью.
 - 14.2.2.4. Исходными данными для определения ограничений по тяге являются:
 - производительность дымососа при полностью открытом направляющем аппарате и предусмотренном режимной картой разрежении вверху топки (при действии ограничений по напору);
 - сопротивление газового тракта, соответствующее этой производительности дымососа, приведенное к температуре, при которой построена его паспортная характеристика, а также нагрузка котла, при которой определены производительность дымососа и сопротивление газового тракта;
 - качество сжигаемого топлива (в. случае сжигания смеси топлив должны быть указаны их доли по теплу), а также избытки воздуха за топкой $\alpha_{\rm T}$, за воздухоподогревателем $\alpha_{\rm BH}$ и дымососом $\alpha_{\rm DC}$;
 - мощность, потребляемая из сети электродвигателем дымососа (для ограничений по мощности);
 - мощность на валу электродвигателя, определяемая по формуле: $N_B^V = N_{\Pi O T} \cdot h_{\mathcal{A} B}$, кВт (14.7) где N_B^V мощность на валу, кВт;

 $N_{\it пот}$ — потребляемая из сети мощность электродвигателя дымососа, кВт;

 $h_{{\it д}{\it B}}$ — коэффициент полезного действия электродвигателя согласно паспортным данным;

— расчетные значения расхода газов, величины сопротивления тракта и потребляемой мощности на номинальной нагрузке, а также паспортные характеристики дымососа $H = f(Q_{DC})$ и $N = f(Q_{DC})$.

В случае если фактическое значение сопротивления тракта (на чистом котле) отличается от расчетного, то необходимо привести и фактическое сопротивление тракта на номинальной нагрузке.

14.2.2.5. Производительность дымососа определяется по формуле:

$$Q_{AC} = B_P \cdot (V_{T,XX} + \Delta a \cdot V^0) \cdot \frac{T_{AC}^{"} + 273}{273}, \, M^3/\Psi$$
 (14.8)

где B_P — расход топлива с учетом механического недожога при максимально возможной нагрузке котла, кг/ч или м³/ч;

 $V_{_{\varGamma,YX}}$ — объем продуктов горения на 1 кг топлива при избытке воздуха $a_{_{\rm BH}}$ за воздухоподогревателем при $0^{\circ}{\rm C}$ и 760 мм.рт.ст.;

 Δa — присосы воздуха в газоходах за воздухоподогревателем;

 V^{0} – теоретический объем воздуха, м³/кг;

 T_{AC} – температура газов у дымососа, °С.

- 14.2.2.6. Величины, входящие в формулу (14.8), определяются следующим образом:
 - расход топлива на котел определяется по обратному балансу;
 - удельные (теоретические) объемы (м³/кг) дымовых газов (и воздуха) определяются по элементарному составу топлива;

Если характеристики сжигаемого топлива отличаются от нормативных значений, то элементарный состав нормативного топлива пересчитывается с учетом балласта фактического топлива;

- присосы воздуха в газовый тракт, значения температур и сопротивлений по газовоздушному тракту определяются по результатам натурных испытаний.
- 14.2.2.7. Для определения ограничений по напору полученные в п. 14.2.2.5. значения расхода газов при полностью открытом направляющем аппарате, а также приведенное значение сопротивления тракта или, что одно и то же, напор, создаваемый дымососом, наносится на график $H = f(Q_{\text{дс}})$ дымососа (рис.14.1).

При отсутствии причин, снижающих напор дымососа (например, износ или занос лопаток золой), полученная точка должна лежать на характеристике, соответствующей j = 0. Если полученная точка лежит ниже кривой j = 0, то это требует выявления причин снижения напора дымососа или проверки правильности определения расхода газов.

14.2.2.8. При определении ограничений мощности полученные значения расхода газов и потребляемая мощность на валу машины наносятся на график $N = f(Q_{\pi C})$ (рис.14.2).

На этом же графике необходимо определить максимальную мощность электродвигателя N_B^{ν} , приведенную к мощности на валу, полученную по формуле (14.7). Положение рабочей точки однозначно позволяет судить о возможности дальнейшего нагружения машины и, соответственно, о наличии ограничений нагрузки котла.

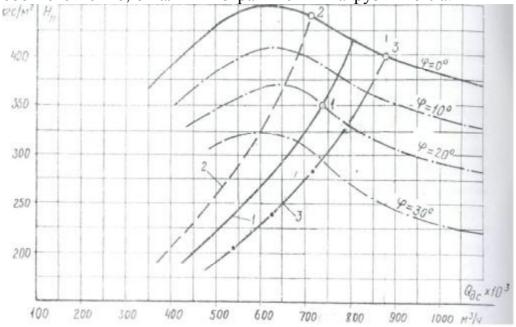


Рис. 14.1. Ограничение паропроизводительности котла из-за нехватки тяги:

1 — расчетная характеристика газового тракта; 2 — характеристика газового тракта при загрязнениях конвективной шахты; 3 — характеристика газового тракта при увеличенных присосах холодного воздуха.

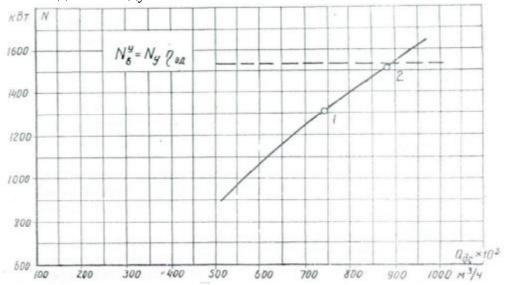


Рис. 14.2. Ограничение паропроизводительности котла из-за нехватки располагаемой мощности электродвигателя дымососа (вентилятора):

— — — – -максимальная мощность на валу машины.

- 14.2.2.9. При условии, когда полученная точка лежит на кривой $H = f(Q_{\text{дс}})$ или $N = f(Q_{\text{дс}})$, полученный расход разов $Q_{\text{дс}}^{\phi}$ и соответствующая ему нагрузка котла $D_{\kappa}^{\text{\it ПP}}$ являются предельными.
- 14.2.2.10. В общем случае, максимальная возможная нагрузка котла, после устранения присосов, определяется на основе следующих соотношений (в расчете на 1 кг топлива:

$$D_K^M = \frac{Q_{\mathcal{A}C}^{\phi}}{Q_{\mathcal{A}C}^P} \cdot D_K^{\mathcal{A}P}, \quad \text{T/Y}$$
 (14.9)

где D_{κ}^{M} и $D_{\kappa}^{\mathit{ПР}}$ — максимальная нагрузка котла после устранения присосов и предельная нагрузка при фактическом значении $a_{\mathrm{II}}^{\mathrm{T}}$, т/ч;

 $Q_{\mathcal{A}^{C}}^{\phi}$ и $Q_{\mathcal{A}^{C}}^{P}$ — фактическое и расчетное значения расхода газов за дымососом.

- 14.2.3. Снижение паропроизводительности котла из-за нехватки располагаемого напора вентилятора.
 - 14.2.3.1. Снижение паропроизводительности котла из-за нехватки располагаемого напора вентилятора может быть вызвано следующими причинами:
 - повышением сопротивления тракта первичного воздуха, в связи с увеличением производительности систем пылеприготовления при ухудшении качества топлива;
 - снижением располагаемого напора вентилятора при работе с рециркуляцией на сторону всасывания машины за счет роста темпера туры «холодного» воздуха (для топлив с более высокой температурой точки росы).
 - 14.2.3.2. В тех случаях, когда общее сопротивление воздушного тракта определяется сопротивлением тракта первичного воздуха (для пылесистем прямого вдувания с воздушной сушкой), сравнение потребного и располагаемого напоров вентиляторов целесообразно вести по давлению воздуха за воздухоподогревателем (ВП), а определение предельной нагрузки котла в зависимости от давления воздуха за воздухоподогревателем (ВП), а также качества топлива и температуры воздуха, поступающего в воздухоподогреватель (доли рециркуляции), производится с помощью номограммы, приведенной на рис.14.3.
 - 14.2.3.3. Для построения номограммы необходимо установить следующие зависимости:
 - сопротивления системы пылеприготовления от ее производительности при определенных значениях вентиляции мельницы, тонкости пыли, степени износа мелющих органов, марки топлива и т.п.;
 - давления воздуха за воздухоподогревателем от нагрузки котла (количество поступающего в котел воздуха) при полностью открытом направляющем аппарате дутьевого вентилятора.

Избыток воздуха в горелках должен соответствовать рекомендациям режимной карты, а температура подогрева воздуха перед воздухоподогревателем соответствовать конкретной марке топлива.

14.2.3.4. На левой верхней половине номограммы (рис.14.3) строится зависимость давления воздуха за воздухоподогревателем от нагрузки котла при избытке воздуха в горелках $a_{\text{орг}}$, равном единице, и полном открытии направляющего аппарата: линия 1 соответствует предельному давлению воздуха за воздухоподогревателем при температуре холодного воздуха 75°C, т.е. при 20% рециркуляции на сторону всасывания машины, линия 2 – давлению воздуха за РВП при температуре холодного воздуха 30°C.

На правой верхней половине номограммы изображено суммарное пылевоздушного сопротивление участка тракта OT воздухоподогревателя $\Delta p_{\pi/C}$, включающее в себя сопротивление горелок, пылепроводов, мельницы, воздуховода И регулирующего первичного воздуха в зависимости от производительности мельницы при постоянном расходе сушильного агента. Иными словами, на левой графика максимальное располагаемое половине верхнего показано давление воздуха за воздухоподогревателем, а на правой – давление воздуха, необходимое для обеспечения требуемой производительности мельницы.

На нижнем графике приводится зависимость паропроизводительности котла, приходящейся на одну работающую мельницу (систему пылеприготовления), в зависимости от теплоты сгорания топлива (количество работающих систем пылеприготовления определяется из условия, что коэффициент их готовности равен 0,9.

14.2.2.5. Предельная нагрузка (при постоянном котла количестве работающих систем пылеприготовления) определяется методом приближения последовательного ПО равенству давления за нагрузке воздухоподогревателем котла, равной $p_{\scriptscriptstyle \mathrm{B}I\!I}$ при D_{κ} , сопротивлению систем пылеприготовления $\Delta p_{\pi/C}$ при нагрузке D_{κ} / n (где n — число работающих систем пылеприготовления).

Средневзвешенная предельная нагрузка без сжигания мазута будет равна сумме двух произведений: предельной нагрузки при полном количестве систем пылеприготовления n на долю времени, в течение которого они работали b (исходя из $K_{\it \Gamma}=0.9$), и предельной нагрузки при количестве работающих систем пылеприготовления, равной n-1, на свою долю времени, т.е. 1-b. Средневзвешенная нагрузка определяется по формуле:

$$D_K^{\text{CP}} = D_K^n \cdot b + D_K^{n-1} \cdot (1-b), \text{ T/H}$$
 (14.10)

В случае, если количество работающих систем пылеприготовления $n \cdot K_{\Gamma}$ составляет меньше n-1, то формула приобретает следующий вид:

$$D_K^{cp} = D_K^{n-1} \cdot \mathbf{b} + D_K^{n-2} \cdot (1 - \mathbf{b}), \qquad (14.11)$$

14.2.2.6. Для схем с вентиляторами первичного воздуха (ВПВ) при определении ограничений необходимо учитывать, насколько открыты направляющие аппараты у ВПВ и основного вентилятора. Если в ВПВ он открыт полностью, а у основного вентилятора еще нет, то вопрос об ограничении нагрузки можно рассматривать только в том случае, когда будет полностью открыт направляющий аппарат основного вентилятора.

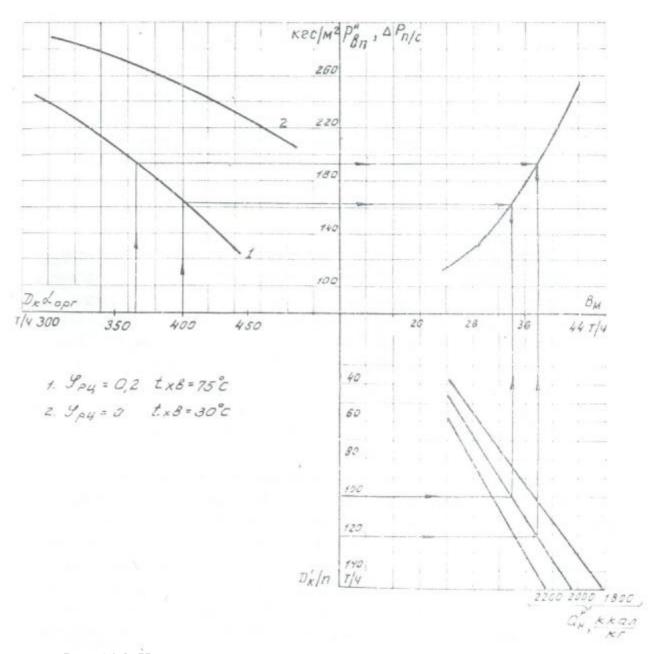


Рис. 14.3. Номограмма для определения ограничений паропроизводительности котла из-за нехватки напора вентилятора.

14.3. Ограничение паропроизводительности котла, обусловленное работой систем пылеприготовления

14.3.1. Ограничение паропроизводительности из-за пылеприготовительного

оборудования оценивается путем сопоставления потребности котла в топливе и суммарной производительности систем пылеприготовления. При этом имеется в виду отсутствие ограничений в производительности питателя топлива или пыли.

- 14.3.2. Увеличение требуемого расхода топлива на отдельную систему пылеприготовления, особенно при поступлении высоковлажного топлива, приводит к ограничению, прежде всего, ее сушильной производительности.
- 14.3.3. Исходными данными для определения ограничений нагрузки котла являются:
 - потребность котла в топливе при изменении его качества или переводе на новый вид топлива;
 - предельная размольная производительность мельницы, определенная по техническим условиям завода-изготовителя или по данным испытаний при условии обеспечения максимально возможного расхода сушильного агента и получения приемлемого качества пыли.
 - предельную сушильная производительность, определенная по техническим условиям завода-изготовителя, при максимальных температуре и расходе сушильного агента и минимальной температуре аэросмеси за мельницей при фактической величине присосов воздуха К_{прс}.

Конкретные минимальные значения температур сушильного агента за мельницей приведены в таблице 14.1.

Таблица 14.1

	Минимально допустимая
Типы систем пылеприготовления	температура сушильного агента
	за мельницей, °С
1. С промбункером:	
для всех топлив, кроме АШ	60
для АШ	90
2. Прямого вдувания:	
- с молотковыми мельницами	
для бурых углей	50
для каменных углей	70
- с мельницами-вентиляторами	100-120
- со среднеходными мельницами	70

14.3.4. Располагаемый расход топлива на котел определяется по формуле:

$$B_K^M = B_M \cdot n \cdot K_\Gamma, \text{ T/Y}$$
 (14.12)

где $B_{\scriptscriptstyle M}$ — предельная производительность мельницы, по размолу или сушке, т/ч.

Из двух полученных значений предельной производительности (размольной или сушильной) в расчет принимается меньшее значение;

n — количество систем пылеприготовления, установленных на котле;

 K_{Γ} – средний коэффициент готовности системы пылеприготовления.

Коэффициент готовности систем пылеприготовления K_{Γ} для базовых режимов работы оборудования принимается равным 0,9, что соответствует его среднему значению для большинства электростанций с удовлетворительной организацией ремонтного обслуживания.

При переменном по нагрузке режиме работы оборудования значения коэффициента готовности в часы прохождения максимума нагрузки следует принимать равным 0,95.

В случае невозможности обеспечения данных значений коэффициента готовности приводятся его фактическое значение с одновременным указанием мероприятий, направленных на его повышение.

- 14.3.5. Определение располагаемого расхода топлива в схемах с промбункером должно проводиться с учетом возможности накопления пыли в часы провала нагрузок и ее последующего использования в часы прохождения максимума. Поэтому, в дополнение к перечисленным в п. 14.3.3 данным необходимо иметь следующую информацию:
 - полезный объем бункера пыли;
 - количество и производительность питателей пыли;
 - длительность прохождения максимумов нагрузки.
- 14.3.6. Определение ограничений нагрузки котла производится путем сопоставления требуемого и располагаемого расходов топлива по формуле: Конкретное значение ограничения определяется по формуле

$$D_{K} = D_{HOM} \cdot \frac{B_{K}^{M}}{B_{K}}, \text{ T/Y}$$
 (14.13)

где $D_{\scriptscriptstyle K}^{\scriptscriptstyle '}$ и $D_{\scriptscriptstyle HOM}$ — возможная и номинальная нагрузки котла, т/ч;

 B_{K}^{M} и B_{K} – располагаемый и требуемый расход фактического топлива.

14.3.7. Недостаток располагаемой производительности систем пылеприготовления может быть частично или полностью компенсирован сжиганием мазута при отсутствии ограничений по шлакованию.

14.4. Ограничение паропроизводительности котла из-за ошибок в проектировании и дефектов оборудования котельных установок.

- 14.4.1. Снижение паропроизводительности котла может быть вызвано следующими причинами:
 - неправильным выбором (в проекте) тягодутьевого оборудования;
 - неправильным выбором пылеприготовительного оборудования;
 - -техническим состоянием котлоагрегата (большие присосы холодного воздуха).
- 14.4.2. Определение ограничений паропроизводительности из-за

неправильно выбранного тягодутьевого оборудования и больших присосов холодного воздуха производится в соответствии с рекомендациями п. 14.2. 14.4.3. Снижение нагрузки котла из-за недостаточной производительности пылеприготовительного оборудования определяется в соответствии с рекомендациями п. 14.3.

Классификатор ограничений установленной мощности

Классификатор ограничений установленной мощности								
Причина ограничений мощности		Коды причин	оды причин ограничений					
	Технические		Временные					
		Длительного	Сезонного	Апериодическ				
		действия	действия	ОГО				
				действия				
Суммарные ограничения мощности	100	200	300	400				
Непроектное топливо (при	101							
соответствии требованиям п. 5.11.2								
Методических указаний)								
Износ котлов и котельно-	102							
вспомогательного оборудования,								
отработавших расчетный ресурс								
Конструктивные дефекты котлов (в т.ч.	103							
котлов-утилизаторов)								
Конструктивные дефекты котельно-	104							
вспомогательного оборудования								
Недостаточная номинальная	105							
производительность котельно-								
вспомогательного оборудования								
Неудовлетворительное техническое	106							
состояние поверхностей нагрева								
котлов (в т.ч. котлов-утилизаторов)								
Неудовлетворительное техническое	107							
состояние газовоздушного тракта								
Неудовлетворительное техническое	108							
состояние котельно- вспомогательного								
оборудования								
Неудовлетворительное техническое	109							
состояние паропроводов, работа								
турбин со сниженными параметрами								
пара								
Недостаточная номинальная	110							
паропроизводительность котлов (в т.ч.								
котлов-утилизаторов)								
Конструктивные дефекты	111							
турбоагрегатов								
Неудовлетворительное техническое	112							
состояние турбоагрегатов								
Неудовлетворительное техническое	113							
состояние лопаточного аппарата								
Неудовлетворительное техническое	114							
состояние вспомогательного								
оборудования турбоагрегатов								
Неудовлетворительное техническое	115							

состояние оборудования и устройств			l]	l
системы регенерации					
Износ турбоагрегата, отработавшего	116				
расчетный ресурс	110				
Недостаточная номинальная подача	117				
ПТН					
Неудовлетворительное техническое состояние ПТН	118				
Отсутствие или недостаток тепловых		220	320	420	
нагрузок ГТУ-ТЭЦ					
Недостаток тепловых нагрузок турбин,		222	322	422	
работающих по техническим причинам					
только с ухудшенным вакуумом					
Прочие причины, связанные с		224	324	424	
режимом потребления тепла					
Отсутствие или недостаток тепловых		225	325	425	
нагрузок турбин типов «Т», «П» ,«ПТ»,					
«Р» (конструктивные особенности, не					
связанные с отклонением от проекта, в					
т.ч. связанные с пропускной					
способностью ЧСД)					
Повышенное потребление тепла (по		231	331	431	
техническим особенностям схемы)					
Отпуск тепла из нерегулируемых		232	332	432	
отборов	400				
Недостаточная пропускная	133				
способность паропроводов свежего					
пара	1.41		241		
Недостаточное количество градирен по	141		341		
проекту	1.40		2.40		
Недостаточная производительность	142		342		
циркуляционных насосов	1.42		242		
Недостаточное количество	143		343		
циркуляционных насосов по проекту	144		344		
Неудовлетворительное техническое	144		344		
состояние трубопроводов Неудовлетворительное техническое	145		345		
состояние градирен	143		343		
Неудовлетворительное техническое	146		346		
состояние циркуляционных насосов	140		340		
Неудовлетворительное техническое	147		347		
состояние конденсаторов	17/		347		
Прочие причины, связанные с работой	148		348		
системы технического водоснабжения	140		340		
Повышение температуры			349		
охлаждающей воды на входе в					
конденсатор (при соответствии					
номинальных характеристик					
вспомогательного оборудования)					
Недостаточная охлаждающая	150		350		
способность прудов- охладителей	200				
Ограничения мощности ГТУ по			351		
1 1		1	1	Į	ı

температуре наружного воздуха		1	I	l I
Ограничения мощности ГТУ по работе	152			
дожимного компрессора	132			
Ограничения мощности ПГУ,			353	
обусловленные наличием			333	
температурных ограничений ГТУ				
Проектное несоответствие мощности	154			
генератора	134			
Работа турбогенератора в режиме		255	355	455
синхронного компенсатора, не		233	333	433
связанная с техническим состоянием				
основного и вспомогательного				
оборудования				
Недостаточная пропускная		256	356	456
способность электротехнического		250	350	150
оборудования электростанции				
(запертая мощность)				
Неудовлетворительное техническое	157			
состояние генератора	10,			
Недостаточная производительность	158			
топливоподачи				
Строительно-монтажные недоделки на	159			
котлах и котельно-вспомогательном				
оборудовании				
Строительно-монтажные недоделки на	160			
турбинах, в тепловых схемах на				
вспомогательном оборудовании турбин				
Недостаточная производительность	161			
общестанционного оборудования и				
устройств (химводоочистка, дымовая				
труба, золоотвалы)				
Недостаточная проектная	162			
производительность				
общестанционного оборудования и				
устройств (химводоочистка, дымовая				
труба, золоотвалы)				
Строительно-монтажные недоделки на	163			
общестанционном оборудовании				
Ограничения мощности по условиям	164		364	
охраны воздушного бассейна				
(превышение норма предельно-				
допустимых выбросов)				
Ограничения мощности по условиям	165		365	
охраны водного бассейна (превышение				
норм предельно-допустимых сбросов				
вредных веществ и температурного				
загрязнения)	1.55		255	
Ограничения мощности по условиям	166		366	
охраны водного бассейна (превышение				
норм водопотребления)				4.67
Ограничения по топливному циклу				467
АЭС		1	l	

Ограничения по работе реакторной установки АЭС	168			468
установки АЭС Системные ограничения *	169	269	369	469
Прочие причины, не вошедшие в	170	270	370	470
классификатор				

^{*} Величина системных ограничений с учетом приоритетности учета определяется ОАО «СО ЕЭС»

				месяц	Велич	чина	пол	казат	еля	по	сутка	м п	лани	руемо	ого
	"Название э	лектростанции''	''К	од КПО''	Велич			М	есяц	ιa ¹ ,	МВт				
Код ГТПГ	Код причины ограничен ия	Расшифровка причины	Номер группы турбоагрег атов ²	Ст. № турбоагрегата ³	Уст. мощно сть	1	2				• • • •		29	30	31
	ИТОГО	ИТОГО	ИТОГО	$ИТОГО^4$											
	причина 1	"причина текстом"	ИТОГО	a, b,c,d,e,f j ⁵											
	причина 1	"причина текстом"	группа 1	a, c, d											
	причина 1	"причина текстом"	группа 2	b, e											
	причина 1	"причина текстом"	TΓf	f											
		•••		•••											
	причина 1	"причина текстом"	ТΓ ј	j											
	причина 2	"причина текстом"	ИТОГО	a, b, c, d 5											
	причина 2	"причина текстом"	группа 3	b, c, d											
	причина 2	"причина текстом"	ТГ а	a											
		•••		•••											
	причина k	"причина текстом"	ИТОГО	a,b,c,d,e,f,gj 5											
	причина k	"причина текстом"	группа 9	b, e, f											
	причина k	"причина текстом"	группа 10	a, c, d											
	причина k	"причина текстом"	ТГ д	g											
	причина k	"причина текстом"	ТГј	j											
	ИТОГО	ИТОГО	ИТОГО	a ⁶											
	причина 1	"причина текстом"	группа 1	a											
	причина 2	"причина текстом"	ТΓа	a											
	причина k	"причина текстом"	группа 10	a											
	ИТОГО	ИТОГО	ИТОГО	b 6											
	причина 1	"причина текстом"	группа 2	b		<u> </u>									
	причина 2	"причина текстом"	группа 3	b		<u> </u>									
						<u> </u>									
	причина k	"причина текстом"	группа 9	b											
	ИТОГО	ИТОГО	ИТОГО	j ⁶											
	причина 1	"причина текстом"	ТГј	j											
						<u> </u>									
	причина k	"причина текстом"	ТГ ј	j											

примечания:

- 1 данное приложение заполняется по каждому месяцу планируемого года для электростанции в целом, для каждой причины возникновения ограничений и для каждого турбоагрегата электростанции вне зависимости от наличия на них ограничений установленной мощности; точность один знак после запятой;
- 2 в группы включаются все турбоагрегаты, технологически объединенные одним фактором, ограничивающим их суммарную установленную мощность. Например, в одну группу необходимо объединить все турбоагрегаты типов "ПТ" и "Р", работающих на один коллектор отборного пара (или одного потребителя) вне зависимости от наличия на них ограничений установленной мощности в целях корректного перераспределения ограничений при изменении эксплуатационного состояния турбоагрегатов, входящих в данную группу. В одну группу также объединяются турбоагрегаты, работающие на одну очередь системы технического водоснабжения, снабжающиеся свежим паром от одного общестанционного паропровода и т.д.; При этом один и тот же агрегат не может входить с одной и той же причиной ограничений в разные группы. Одной группе может соответствовать только одна причина возникновения ограничений;

При наличии на турбоагрегате собственных ограничений данный турбоагрегат формирует отдельную группу, для которой вместо номера группы присваивается имя "ТГ "номер"". Количество групп, в которые входит каждый турбоагрегат, соответствует количеству причин возникновения ограничений мощности данного турбоагрегата.

- 3 в данной графе приводятся станционные номера турбоагрегатов;
- 4 в данной строке заполняется суммарная величина ограничений установленной мощности по электростанции в целом; сумма итоговых ограничений по причинам возникновения должна быть равна ограничению по электростанции в целом;
- 5 в данной строке заполняется суммарная величина ограничений установленной мощности суммарно по каждой причине возникновения с разбивкой в нижеследующих строках по всем группам турбоагрегатов, объединенным данной причиной; Величина долей ограничений определяется в соответствии с правилами приоритетности учета ограничений.
- 6 в данной строке заполняется суммарная величина ограничений установленной мощности суммарно по турбоагрегату с разбивкой в нижеследующих строках по каждой причине возникновения ограничений и указанием долей общегрупповых ограничений; сумма ограничений по причинам должна быть равна ограничению по турбоагрегату в целом.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТУРБОУСТАНОВОК

Параметр Еди изме		Величи	іна пар	раметра
Ста	анционный номер	1		k
	Маркировка, тип	т/агрегат		т/агрегат
Дата ввода	в эксплуатацию			
Дата последнего изменения установл	енной мощности			
`	ринадлежность ²			
Установленная (номинальная) мощность	МВт			
Максимальная мощность	МВт			
Максимальная мощность при работе в конденсационном режиме	МВт			
Номинальный расход пара в голову	т/ч			
Максимальный расход пара в голову	T/Y			
Расход пара в голову при работе в конденсационном режиме	т/ч			
Номинальное давление свежего пара	кгс/см2			
Номинальная температура свежего пара	°C			
Максимальное давление в камере производственного отбора/противодавление ³	кгс/см2			
Номинальное давление в камере производственного отбора/противодавление ³	кгс/см2			
Максимальная нагрузка производственного отбора/противодавления ³	т/ч		 	
Номинальная нагрузка производственного отбора/противодавления ³	т/ч			
Диапазон изменения давления в верхнем теплофикационном отборе	кгс/см ²			
Диапазон изменения давления в нижнем теплофикационном отборе (теплофикационном отборе) ⁴	кгс/см2			
Номинальное давление в верхнем теплофикационном отборе	кгс/см2			
Номинальное давление в нижнем теплофикационном отборе (теплофикационном отборе) ⁴	кгс/см2			
Максимальная нагрузка теплофикационных отборов (теплофикационного отбора) ⁴	Гкал/ч			
Максимальный расход пара в отборы	т/ч			
Номинальная нагрузка теплофикационных отборов (теплофикационного отбора) ⁴	Гкал/ч			
Номинальный расход пара в отборы	т/ч			
	ип конденсатора			
	ство на турбину			
Максимальный расход пара в конденсатор	т/ч			
Вентиляционный пропуск пара в конденсатор	т/ч			
Номинальный расход охлаждающей воды, в т.ч.:	т/ч			
через основной пучок	т/ч			
через встроенный пучок	т/ч			
Минимальный расход охлаждающей воды, в т.ч.:	т/ч			
через основной пучок	т/ч			
через встроенный пучок	T/Y			
Площадь поверхности охлаждения, в т.ч.:	M ²			<u> </u>
основного пучка	M ²		 	
встроенного пучка	M ²		 	
Максимальный отпуск тепла от встроенного пучка	Гкал/ч		├	
Номинальная температура охлаждающей воды на входе в конденсатор	°C		 	
	тип генератора		—	
Номинальная активная мощность	MB _T MBA		 	
Номинальная полная мощность Частота вращения	МВА об/мин		 	
Частота вращения Напряжение на выводах	оо/мин кВ			
папряжение на выводах	KD	l	1	1

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСНОВНЫХ И ПИКОВЫХ БОЙЛЕРОВ

Параметр	Единица измерения	Величина параметра				
Стан	ционный номер	1		k		
	Tun	Основной/пиковый бойлер		Основной/пиковый бойлер		
	Маркировка					
Место подкл	пючения по пару					
Площадь поверхности нагрева	M ²					
Число ходов по воде	-					
Номинальная тепловая производительность	Гкал/ч					
Номинальный расход греющего пара	т/ч					
Максимальный нагрев сетевой воды	°C					
Номинальное давление пара	кгс/см2					
Номинальное давление сетевой воды	кгс/см2					
Номинальный расход сетевой воды	т/ч					
Минимально допустимый расход сетевой воды	т/ч					

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИКОВЫХ ПАРОВЫХ КОТЛОВ

Параметр	Единица измерения	Величина параметра		
Ста	нционный номер	1		k
Λ	Іаркировка, тип	ППК		ППК
Номинальное давление свежего пара	кгс/см2			
Номинальная температура свежего пара	°C			
Максимальная паропроизводительность	т/ч			
Номинальная паропроизводительность	т/ч			
Минимально допустимая паропроизводительность	т/ч			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПВК

TEMIN TECKNE AND ARTEST HOTTING HOX						
Параметр	Единица измерения	Величи	раметра			
Ста	нционный номер	1	•••	k		
Λ	Іаркировка, тип	ПВК		ПВК		
Максимальная производительность	Гкал/ч					
Номинальная производительность	Гкал/ч					
Номинальный расход воды	т/ч					
Минимальная производительность	Гкал/ч					
Минимально допустимый расход воды	т/ч					
Температурный график	°C/°C					
Минимально допустимая температура сетевой воды на входе	°C					

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РОУ

Параметр	Единица измерения	Величи	раметра	
Ста	нционный номер	1		k
Λ	<i>Маркировка, тип</i>	РОУ		РОУ
Место подк				
Номинальное давление свежего пара	кгс/см2			
Номинальная температура свежего пара	°C			
Номинальное давление редуцированного и	кгс/см2			
охлажденного пара	KI C/ CM			
Номинальная температура редуцированного и	°C			
охлажденного пара	C			
Номинальная производительность	т/ч			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПАРОВЫХ ЭНЕРГЕТИЧЕСКИХ КОТЛОВ

Параметр	Единица измерения	Величи	раметра	
Ста	нционный номер	1		k
Λ	Ларкировка, тип	ПК		ПК
Год ввода	в эксплуатацию			
Π_{I}	инадлежность ²			
Номинальное давление свежего пара	кгс/см2			
Номинальная температура свежего пара	°C			
Максимальная паропроизводительность	т/ч			
Номинальная паропроизводительность	т/ч			
Минимально допустимая паропроизводительность	т/ч			
Минимально допустимая паропроизводительность при работе на "скользящих параметрах"	т/ч			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГТУ

Параметр	Единица измерения	Величина параметра
Станци	онный номер	
Мар	кировка, тип	
Режим работы (базовый к	или пиковый)	
Дата ввода в эн	ксплуатацию	
Дата последнего изменения установленно	рй мощности	
Максимальная электрическая мощность ⁵	МВт	
Номинальная электрическая мощность	МВт	
Минимально допустимая электрическая мощность, приведенная к нормальным условиям ⁵	МВт	
Температура маркировки	°C	
Номинальный расход газов на выходе, приведенный к нормальным условиям ⁵	кг/с	
Минимально допустимый расход газов на выходе, приведенный к нормальным условиям ⁵	кг/с	
Температура газов на выходе, приведенная к нормальным условиям ⁵	°C	
Минимально допустимая температура газов на выходе, приведенная к нормальным условиям ⁵	°C	
Маркировка, тиг	<i>генератора</i>	
Номинальная активная мощность	МВт	
Номинальная полная мощность	MBA	
Частота вращения	об/мин	
Напряжение на выводах	кВ	·

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕАКТОРОВ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

Параметр	Единица измерения	Величі	ина пара	іметра
Ста	нционный номер	1		k
I.	Ларкировка, тип	реактор		реактор
Год ввода	в эксплуатацию			
Количество	турбоустановок			
Номинальная тепловая мощность реактора	МВт			
Номинальное давление свежего пара	кгс/см2			
Номинальная температура свежего пара				
Номинальная паропроизводительность	т/ч			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦИРКУЛЯЦИОННЫХ НАСОСОВ

Параметр	Единица измерения	Величи	на па	раметра
Ста	1		k	
Λ	Ларкировка, тип	ЦН		ЦН
Π_{l}	инадлежность ²			
Номинальная подача	т/ч			
Номинальный напор	M.B.CT.			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАДИРЕН

Параметр	Единица измерения	Величи	на па	раметра
Ста	нционный номер	1		k
Λ	Ларкировка, тип	градирня		градирня
Пр	инадлежность ²			
Площадь орошения	M^2			
Номинальный расход воды	т/ч			
Максимальная удельная тепловая нагрузка	Мкал/($\mathbf{q} \cdot \mathbf{m}^2$)			
Высота башни	M			
	Тип оросителя			
Высота воздухо-входного окна	M			
Высота оросителя				
Расстояние в свету между щитами оросителя	MM			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭНЕРГОБЛОКОВ ПГУ

Параметр	Единица	Величина
<u>`</u>	измерения	параметра
<u>Энергоблок</u>	v	
Cm	анционный номер	
Hama and	Маркировка, тип	
	а в эксплуатацию	
Дата последнего изменения установ	МВт	
Максимальная электрическая мощность при нормальных условиях ⁵ Номинальная электрическая мощность	MBT	
Номинальная электрическая мощность	Гкал/ч	
Диапазон регулирования электрической нагрузки	%	
Газовая турбина	70	
	анционный номер	
Crit	Маркировка, тип	
Режим работы (базс		
1 ежим риооты (оизс	Количество	
Пата есод	а в эксплуатацию	
Дата последнего изменения установ.	, ,	
Максимальная электрическая мощность ⁵	МВт	
Номинальная электрическая мощность	МВт	
Минимально допустимая электрическая мощность, приведенная к нормальным условиям ⁵	МВт	
Температура маркировки	°C	
Номинальный расход газов на выходе, приведенный к нормальным условиям ⁵	кг/с	
Минимально допустимый расход газов на выходе, приведенный к нормальным условиям ⁵	кг/с	
Температура газов на выходе, приведенная к нормальным условиям ⁵	°C	
Минимально допустимая температура газов на выходе, приведенная к нормальным условиям ⁵	°C	
	, тип генератора	
Номинальная активная мощность	МВт	
Номинальная полная мощность	MBA	
Частота вращения	об/мин	
Напряжение на выводах	кВ	
Котел-угилизатор		
Ст	анционный номер	
	Маркировка, тип	
	Количество	
Номинальный расход газов, приведенный к нормальным условиям	кг/с	
Номинальная паропроизводительность контура высокого давления, приведенная к нормальным условиям	т/ч	
Номинальное давление пара на выходе контура высокого давления, приведенное к нормальным условиям	кгс/см2	
Номинальная температура пара на выходе контура высокого давления, приведенная к нормальным условиям	°C	
Номинальная паропроизводительность контура среднего давления, приведенная к нормальным условиям	т/ч	
Номинальное давление пара на выходе контура среднего давления, приведенное к нормальным условиям	кгс/см ²	
Номинальное давление нара на выходе контура среднего давления, приведенное к пормальным условиям	°C	
Номинальная паропроизводительность контура низкого давления, приведенная к нормальным условиям	т/ч	
Номинальная паропроизводительность контура низкого давления, приведенная к нормальным условиям	Krc/cm ²	
Номинальная температура пара на выходе контура низкого давления, приведенная к нормальным условиям	°C	
Номинальная тепловая нагрузка ВВТО, приведенная к нормальным условиям	Гкал/ч	
Расход сетевой воды через ВВТО не менее	°C	
Температура сетевой воды на входе в ВВТО, не более	°C	
Termiepurgpa ecresión bodas na brode a DDTO, ne obnec	%	

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭНЕРГОБЛОКОВ ПГУ (ПРОДОЛЖЕНИЕ)

Параметр	Единица измерения	Величина параметра
Паровая турбина	 	1
	панционный номер	
C.	Маркировка, тип	
	Количество	
Пата вво	да в эксплуатацию	
Лата последнего изменения устано	, ,	
Установленная (номинальная) мощность	МВт	
Максимальная мошность	МВт	
Максимальная мощность при работе в конденсационном режиме	МВт	
Максимальный расход пара контура высокого давления	т/ч	
Номинальный расход пара контура высокого давления	т/ч	
Давление пара контура высокого давления перед стопорными клапанами	кгс/см2	
Температура пара контура высокого давления перед стопорными клапанами Температура пара контура высокого давления перед стопорными клапанами	°C	
Максимальный расход пара контура среднего давления	т/ч	
Номинальный расход пара контура среднего давления	т/ч	
Давление пара контура среднего давления перед стопорными клапанами	кгс/см2	
Температура пара контура среднего давления перед стопорными клапанами	°C	
Максимальный расход пара контура низкого давления	т/ч	
Номинальный расход пара контура низкого давления	т/ч	
Давление пара контура низкого давления перед стопорными клапанами	кгс/см2	
дамжине пара контура инзкого давления перед стопорными клапанами	°C	
Максимальное давление в камере производственного отбора /противодавление ³	кгс/см2	
максимальное давление в камере производственного отбора /противодавление ³	кгс/см2	
Максимальная нагрузка производственного отбора /противодавления ³	T/Y	
Номинальная нагрузка производственного отбора /противодавления ³	т/ч	
Диапазон изменения давления в верхнем теплофикационном отборе	KTC/CM ²	
Диапазон изменения давления в верхнем теплофикационном отооре Диапазон изменения давления в нижнем теплофикационном отборе (теплофикационном отборе) 4	KTC/CM ²	
Номинальное давление в верхнем теплофикационном отборе	KTC/CM ²	
Номинальное давление в нижнем теплофикационном отборе (теплофикационном отборе) ⁴	Krc/cm ²	
Максимальная нагрузка теплофикационных отборов (теплофикационного отбора) ⁴	Гкал/ч	
Максимальный расход пара в отборы	т/ч	
Номинальная нагрузка теплофикационных отборов (теплофикационного отбора) ⁴	Гкал/ч	
Номинальный расход пара в отборы	T/Y	
	пип конденсатора	
	нап колоспсатора	
Максимальный расход пара в конденсатор	т/ч	
Вентиляционный пропуск пара в конденсатор	т/ч	
Волгиляционный пропуск пара в конденсатор Номинальный расход охлаждающей воды, в т.ч.:	т/ч	
поминальный расход охлаждающей воды, в т.ч через основной пучон		
через встроенный пучон		
Минимальный расход охлаждающей воды, в т.ч.:	т/ч	
через основной пучог		
через встроенный пучог		
Площадь поверхности охлаждения, в т.ч.:	M ²	
основного пучк		1
встроенного пучк		
Максимальный отпуск тепла от встроенного пучка	Гкал/ч	
Номинальная температура охлаждающей воды на входе в конденсатор	°C	
	а, тип генератора	
Номинальная активная мощность	МВт	1
Номинальная полная мощность	MBA	Í
	об/мин	1
Частота вращения		

примечания:

- 1 данное приложение заполняется всеми электростанциями вне зависимости от наличия ограничений установленной мощности;
- 1.1. приложение передается в филиал ОАО "СО ЕЭС" РДУ один раз в год в соответствии с Регламентом согласования и корректировки ограничений установленной мощности электростанции; В случае изменения в течение года характеристик оборудования, указанных в данном приложении, на этапе месячного планирования приложение представляется повторно;
- 1.2. изменение структуры таблиц приложения (добавление, удаление строк, изменение порядка следования строк) не допускается;
- 1.3. приложение передается в филиал ОАО "СО ЕЭС" РДУ на бумажном носителе и в электронном виде в формате Adobe Acrobat Reader .pdf и в виде таблиц MS Excel .xls;
- 1.4. приложение на бумажном носителе сшивается, нумеруется и заверяется подписями технических руководителей электростанции и соответствующими печатями; приведенные формы, содержащие информацию о всех единицах одного вида оборудования в одной таблице, предназначены для представления в электронном виде в формате MS Excel; При представлении таблиц на бумажном носителе для каждой единицы оборудования (одна турбоустановка, один энергетический котел, РОУ и т.д.) заполняется отдельная таблица по аналогичной форме;
- 1.5. приложение в электронном виде в формате Adobe Acrobat Reader должно являться отсканированной электронной копией приложения, представляемого на бумажном носителе с подписями и печатями;
- 1.6. приложение в электронном виде в формате MS Excel должно размещаться в одном файле, каждая таблица на отдельном листе, и содержать сводную информацию по единицам оборудования каждого вида (одна таблица по всем турбоустановкам, одна таблица по всем энергетическим котлам, одна таблица по POV и т.п.), при этом в правой части таблицы для каждой новой единицы оборудования в порядке следования их станционных номеров добавляются дополнительные столбцы без изменения количества строк;
- 2 в графе "принадлежность" для турбоустановок указывается отнесение турбоустановки к тому или иному блоку, для энергетических котлов отнесение к тому или иному блоку (для дубль-блоков), либо при наличии поперечных связей перечисляются через запятую станционные номера всех турбоустановок, объединенных общим паропроводом, на который работает соответствующий котел, для градирни через запятую станционные номера турбоустановок, объединенных очередью системы техводоснабжения, для циркуляционных насосов отнесение к тому или иному блоку или через запятую станционные номера турбоустановок, объединенных очередью системы техводоснабжения;
- 3 в данных сроках указываются соответствующие параметры турбин, имеющих отборы пара производственных параметров (типа "П", "ПТ"), или противодавление (типа "Р", "ТР"); для турбин, имеющих и отбор пара производственных параметров и противодавление (например типа "ПР", "ПТР" и т.п,), приводятся оба показателя через дробь в соответствующем порядке.
- 4 для турбин, имеющих только один теплофикационный отбор, заполняются строки для нижнего теплофикационного отбора;
- 5 параметры определяются при нормальных условиях в соответствии с требованиями ГОСТ 20440 "Установки газотурбинные. Методы испытаний." и ГОСТ Р 52200 "Установки газотурбинные. Нормальные условия и номинальные показатели.".

фамилия, и.о.

ФАКТИЧЕСКИЕ ТЕПЛОВЫЕ НАГРУЗКИ

	B 20	Г.
наименован	ние электростанции	

		Значение показателя (Гкал) по месяцам											
Показатель	I	II	III	IV	v	VI	VII	VIII	IX	X	XI	XII	Приме чание
Фактические (за соотве	тств	уюш	ций ка	аленд	арні	ый пе	риод)	теплов	вые н	агруз	ки 1	,	
BCETO ²													
внешних потребителей всего, в т.ч.:													
в паре производственных параметров всего ³ ,													
в т.ч.:													
в паре производственных отборов													
(противодавления) турбин ⁴ кгс/см ²													
•••													
кгс/см ²													
от РОУ ⁵ кгс/см ²													
POУкгс/см ²													
от пиковых паровых котлов ⁵ кгс/см ²													
кгс/см ²													
в горячей воде ⁶ , в т.ч.:													
в паре теплофикационных параметров													
с горячей водой от основных бойлеров ⁷													
от встроенных пучков конденсаторов													
от пиковых бойлеров с паром ⁸													
кгс/см ²													
кгс/см ²													
от пиковой водогрейной котельной													
потребителей собственных нужд всего в													
т.ч.													
в паре производственных параметров всего ³ ,													
в т.ч.:													
в паре производственных отборов													
(противодавления) турбин ⁴ кгс/см ²													
•••													
кгс/см ²													
от РОУ ⁵ кгс/см ²													
POYKFC/CM ²													
от пиковых паровых котлов ⁵ кгс/см ²													
кгс/см ²													
в горячей воде 6 , в т.ч.:													
в паре теплофикационных параметров													
с горячей водой от основных бойлеров ⁷		-			<u> </u>				ļ		-		
от встроенных пучков конденсаторов													
от пиковых бойлеров с паром ⁸ кгс/см ²		<u> </u>											
		ļ											
кгс/см ²		ļ											
от пиковой водогрейной котельной								<u> </u>					
Главный инженер (технический рукс	BOI	тите	ль)										

Напечатано с сайта ОАО "CO EЭC" www.so-ups.ru

подпись

ПРОГНОЗ ТЕПЛОВЫХ НАГРУЗОК

__в 20__г.

наименование электростанции

Показатель	Значение показателя (Гкал) по месяцам I II III IV V VI VIII VIII IX X XI XII												Приме
			III	IV	V	VI	VII	VIII	IX	X	XI	XII	чание
Заявленные тепловые нагрузки внеш	них і	ютр	ебите	лей и	pac	нетные	нагру	зки пот	реби	теле	й соб	ственнь	іх нужд
ВСЕГО ²													
внешних потребителей всего, в т.ч.:													
в паре производственных параметров всего ³ , в т.ч.:													
в паре производственных отборов (противодавления) турбин ⁴ кгс/см ²													
•••													
кгс/см ²													
от POУ ⁵ кгс/см ²													
РОУкгс/см ²													
от пиковых паровых котлов ⁵ кгс/см ²													
кгс/см ²													
в горячей воде 6 , в т.ч.:													
в паре теплофикационных параметров с горячей водой от основных бойлеров 7													
от встроенных пучков конденсаторов													
от пиковых бойлеров с паром ⁸ кгс/см ²													
кгс/см ²													
от пиковой водогрейной котельной													
потребителей собственных нужд всего в т.ч.													
в паре производственных параметров всего ³ , в т.ч.:													
в паре производственных отборов (противодавления) турбин ⁴ кгс/см ²													
krc/cm ²													
от POУ ⁵ кгс/см ²													
РОУкгс/см ²													
от пиковых паровых котлов ⁵ кгс/см ²													
кгс/см ²													
в горячей воде ⁶ , в т.ч.:													
в паре теплофикационных параметров с горячей водой от основных бойлеров ⁷													
от встроенных пучков конденсаторов	1		1					1					
от пиковых бойлеров с паром ⁸ кгс/см ²													
 кгс/см ²								1					
от пиковой водогрейной котельной								 					
от пиковои водогреиной котельной	L	L	1	1	L	l .	L	I	l		L	ı	

Главный инженер (технический руководитель)		_
полпись	фамилия и о	

ПРИМЕЧАНИЯ:

- 1 заполняется за три последних календарных года, начиная с месяца (N-2), где N месяц подачи
- документов (соответственно, 3 или 4 таблицы, соответствующих тому или иному году);
- 2 величина тепловых нагрузок в строке "ВСЕГО" должна быть равна сумме соответствующих тепловых нагрузок внешних потребителей и потребителей собственных нужд;
- 3, 6 величина тепловой нагрузки в данной строке должна быть равна сумме величин по нижележащим составляющим строкам;
- 4 в объем пара промышленных параметров, отпущенного из отборов (противодавления) турбин, не включается объем пара, приходящегося на пиковые бойлера, отпуск тепла с данным паром учитывается в отпуске тепла с горячей водой от пиковых бойлеров; заполняется для всех величин давления пара, отпускаемого из производственных отборов (противодавления) турбин;
- 5 в объем пара промышленных параметров, отпущенного от РОУ (пиковых паровых котлов), не включается объем пара, приходящегося на пиковые бойлера, отпуск тепла с данным паром учитывается в отпуске тепла с горячей водой от пиковых бойлеров; заполняется для всех величин давлений пара, отпускаемого от РОУ электростанции;
- 7 заполняются тепловые нагрузки основных бойлерных установок турбин типа "Т", "ПТ", "ТР";
- 8 в объем отпуска тепла с горячей водой от пиковых бойлеров включается отпуск пара из нерегулируемых отборов турбин на нужды теплофикации.

ПРОГНОЗ РАСПРЕДЕЛЕНИЯ ТЕПЛОВЫХ НАГРУЗОК МЕЖДУ ОТБОРАМИ (ПРОТИВОДАВЛЕНИЕМ) ТУРБИН, РОУ И ПВК

_______ с ___ по _____ 20__ г. наименование электростанции число месяц

гурбины, парового	К, та	льный пара в грбины ²			C	тпуск те	епла ¹ от		Длительности Парамет			ч. н при пр	огнозируемых	
турбинг	ПВК, котла	итьный пара в урбины				J				1			отборов	
номер ч кового итла	РОУ,	Номинал расход г голову ту	РОУ, пико паро кот:	ВЫХ	П-отб	бора ⁴	Т-отбора ⁵		встроенных пучков	F	Расходы пара		Гаксимальная цность согласно циаграммам режимов	
Станционный РОУ, ПВК, пи кс	ип турбины, икового пар	$\mathrm{D}_{\scriptscriptstyle{\mathrm{HOM}}}$	Q _{РОУ/} ПВК/	D _{POУ/} ПВК/	Q_{Π}	D_Π	Q_{T}	D_T	$Q_{\mathrm{B\Pi}}$	свежего в голову	в конденс атор		на	Макси мощност диагр реж
ан.	Тип пик		ППК	ППК						D_0	D_{κ}	I	О _{рег}	N _{max}
C ₁		т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	т/ч	т/ч	$%D_{0}$	МВт
•••		•••	•••	•••		•••	•••	•••	•••	•••	•••	•••		•••

Главный инженер		
•	подпись	фамилия, и.о.

ПРИМЕЧАНИЯ:

Указываемые в данной таблице значения мощности определяются согласно диаграммам режимов при заданных нагрузках отборов *без учета* результатов расчета ограничений по другим причинам.

- 1 заполняется для каждого подпериода (т.е. периода с неизменным распределением тепловых нагрузок); сумма произведений тепловых нагрузок в Гкал/ч на длительность соответствующих подпериодов в рамках календарного месяца должна быть равна месячной тепловой нагрузке, приводимой в Приложении 3 к настоящим методическим указаниям суммарно по электростанции; нагрузки отборов (противодавления) турбин, встроенных пучков конденсаторов, РОУ, ПВК, пиковых паровых котлов должны включать в себя как прогнозируемые тепловые нагрузки внешних потребителей, так и тепловые нагрузки потребителей собственных нужд; В конце таблицы приводится строка: «итого по электростанции»
- 2 заполняется согласно паспортным данным турбоагрегатов;
- 3 в нагрузке РОУ (пиковых паровых котлов) необходимо показать соответствующий расход пара, отпущенного внешним потребителям и потребителям собственных нужд, в том числе, приходящийся на пиковые бойлера;
- 4 в нагрузке производственных отборов (противодавления) турбин необходимо показать соответствующий расход пара, отпущенного внешним потребителям и потребителям собственных нужд, в том числе, приходящийся на пиковые бойлера;
- 5 в нагрузке теплофикационных отборов турбин необходимо показать соответствующий расход пара, отпущенного внешним потребителям и потребителям собственных нужд.

СОГЛАСОВАНО:

Главный инженер ТЭС _____

Начальник ПТО ТЭС _____

наименование ТЭС

наименование ТЭС

Приложение 5 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

фамилия, и.о.

фамилия, и.о.

(материальн	io orbererben	ное лицо компании	-сооственника)		_												
подпись		фамилия, и.о. 20 г.															
		ОГ	ПЕРЕЧЕІ РАНИЧЕНИЙ МОЩ					HA) 20	20 ĉ	2.2.						
K	од	Наим	енование	Срок			Сок	ращен	ие огр	анич	ений м	иощно	сти, М	ΊВτ			
группы оборудо- вания	причины ограни- чений	Оборудования	мероприятия	исполнения (месяц)	Год	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
12		Градирня №3	Реконструкция с заменой оросителей	Август 2008 г		0	0	0	0	10	60	100	59	15	0	0	0

подпись

подпись

СОГЛАСО (материальн		енное лицо компані	ии-собственника)_												33101	unpoc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
подпись		фамилия, и.о. 20 г.	-																	
		ОГРАНИЧЕНИ	ОТЧЕТ О І ИЙ МОЩНОСТИ	ПРОВЕДЕНИ! наименование					ОД С_				20 сяц)_ г.						
Код		Наименование		Срок		Тип	Сокращение ограничений мощности, МВт													
группы оборудо- вания	причин ы ограни- чений	Оборудования	мероприятия		Год		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
12		Градирня №3	Реконструкци я с заменой			План Факт	0	0	0	0	10	60	100	59	15	0	0	0		
Главный і	инженер	ГЭС	оросителей именование ТЭС	<u> </u>			одпис	СЬ	-	0	0	0	фами	59 илия, и	1.0.	0	0	0		
Начальни	к ПТО ТЗ		 менование ТЭС	1		П	одпис	сь	_				фамі	 илия, и	i.o.					

Пример заполнения формы №5

Исходные данные:

Период согласования: по месяцам 2008 года;

Установленный срок устранения ограничений – 3 года;

ПЕРЕЧЕНЬ МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ОГРАНИЧЕНИЙ МОЩНОСТИ **Новой ТЭС** НА 2008 - 2010 г.г.

Код		Наиме	_		Сокращение ограничений мощности, МВт													
группы оборудо- вания	причины ограни- чений	Оборудования	мероприятия	Срок исполнения (месяц)	Год	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
		Градирня №3	Реконструкция с заменой оросителей	Август 2008 г	2008	0	0	0	0	0	0	0	0	15	0	0	0	
12					2009	0	0	0	0	10	60	100	59	15	0	0	0	
					2010	0	0	0	0	10	60	100	59	15	0	0	0	
		Котел №6	Реконструкция и модернизация	Март 2009 г.	2008	0	0	0	0	0	0	0	0	0	0	0	0	
12					2009	0	0	0	0	0	0	0	0	0	0	20	20	
					2010	20	20	20	0	0	0	0	0	0	0	20	20	

Пример заполнения формы №6

Мероприятия по реконструкции градирни проведены в срок

Исходные данные:

Период согласования: по месяцам 2010 года;

Установленный срок устранения ограничений – Згода;

Срок подачи: июль 2009 года;

Отчетный период: июль 2008 – июнь 2009 года;

ОТЧЕТ О ПРОВЕДЕНИИ МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ОГРАНИЧЕНИЙ МОЩНОСТИ **Новой ТЭС** ЗА ПЕРИОД С **июля** 200**8** ПО **июнь** 200**9** г.

Код							Сокращение ограничений мощности, МВт											
		Наименование		Срок		Тип												
группы	причины	Оборудован	мероприятия	исполнени	, ,	величин												
оборудо	ограни-	ия		я (месяц)		Ы	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
вания	чений																	
		Градирня №3	Реконструкци я с заменой оросителей	Август 2008 г.	2008	План	-	-	-	-	-	-	0	0	15	0	0	0
12						Факт	-	-	-	-	-	-	0	0	15	0	0	0
12					2009	План	0	0	0	0	10	60	-	-	-	-	-	-
						Факт	0	0	0	0	10	60	-	-	1	-	-	-
			Реконструкци я и	Март	2008	План	-	-	-	-	-	-	0	0	0	0	0	0
12		Котел №6				Факт	-	-	-	-	-	-	0	0	0	0	0	0
12		101011110	модернизация	2009 г.	2009	План	0	0	0	0	0	0	-	-	-	-	-	-
			модериизации			Факт	0	0	0	0	0	0	-	-	-	-	-	-

Приложение 7.3 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

Пример заполнения формы №6

Мероприятия по реконструкции градирни не проведены

Исходные данные:

Период согласования: по месяцам 2010 года;

Срок подачи: июль 2009 года;

Отчетный период: июль 2008 – июнь 2009 года;

ОТЧЕТ О ПРОВЕДЕНИИ МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ОГРАНИЧЕНИЙ МОЩНОСТИ **Новой ТЭС** ЗА ПЕРИОД С **июля** 200**8** ПО **июнь** 200**9** г.

К	ЮД							Сок	раще	ние от	грани	чений	мощн	юсти,	МВт			
		Наимен	нование	Срок		Тип												
группы	причины	Оборудования	мероприятия	исполнения	Год	величи												
оборудо	ограни-			(месяц)		ны	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
вания	чений																	
					2008	План	-	ı	-	-	-	-	0	0	15	0	0	0
10		Б Ж2	Реконструкци	Август	2008	Факт	-	1	-	-	-	-	0	0	0	0	0	0
12		Градирня №3	я с заменой оросителей	2008 г.	2009	План	0	0	0	0	10	60	-	-	-	-	-	-
			Promote		2009	Факт	0	0	0	0	0	0	-	-	-	-	-	-
					2000	План	-	-	-	-	-	-	0	0	0	0	0	0
10		YC 10.6	Реконструкци	Март	2008	Факт	-	-	-	-	-	-	0	0	0	0	0	0
12		Котел №6	я и модернизация	2009 г.	2009 г.		0	0	0	0	0	0	-	-	-	-	-	-
			-		2009		0	0	0	0	0	0	-	-	1	1	-	-

Приложение 7.4 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

Пример заполнения формы №6

Мероприятия по реконструкции градирни и котла проведены в срок

Исходные данные:

Период согласования: корректировка ограничений на январь 2010 года;

Срок подачи: декабрь 2009 года;

Отчетный период: декабрь 2008 – ноябрь 2009 года;

ОТЧЕТ О ПРОВЕДЕНИИ МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ОГРАНИЧЕНИЙ МОЩНОСТИ **Новой ТЭС** ЗА ПЕРИОД С **июля** 200**8** ПО **июнь** 200**9** г.

Ко	ЭД							Сон	краще	ние о	грани	ичений	й мощ	ности	, МВт	1				
		Наиме	нование	Срок		Tvv		Тип												
группы	причин	Оборудовани	Мероприятия	исполнени	ΙΙОЛ															
оборудо	Ы	Я		я (месяц)		величи ны	Ţ	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII		
вания	ограни-					1111	1	11	111	1 4	•	V 1	V 11	V 111	171	71	711	7111		
	чений																			
					2008	План	-	-	-	-	-	-	-	-	-	-	-	0		
			Реконструкци	Август –	Aprica		2008	Факт	-	-	-	-	-	-	-	-	-	-	-	0
12	Градирия №3 д с заменой АВ	2008 г.	2000	План	0	0	0	0	10	60	100	59	15	0	0	-				
			оросителен		2009	Факт	0	0	0	0	10	60	100	59	15	0	0	-		
					2008	План	-	-	-	-	-	-	-	-	-	-	ı	0		
			Реконструкци	1 2008 -		Факт	-	-	-	-	-	-	-	-	-	-	ı	0		
12		Котел №6	Я И	2009 г.	2009	План	0	0	0	0	0	0	0	0	0	0	20	-		
			модернизация			Факт	0	0	0	0	0	0	0	0	0	0	20	-		

Приложение 8 Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

Полномочный представитель компании-собственника	/_			іректор по AO «CO E				ию	pa	ЗВИ Т	гием І	E Э С				
	пись фаг		0.	AO «CO E		·" –		дпи	сь	′- ф "_	амил _''	ия, и.о.			20 _	_Г.
		ЕМЫЕ С	ОГРАНИ ———— ие электро	УЧЕНИЯ останции	<i>M</i>		ЦН в 20			И						
Показатель	Код группы оборуд.	Код вида топлива	Станцио нный номер турбоаг регата	Код причины ограниче ний							ателя VII	(МВт) г VIII				XII
Установленная мощность, всего			peruru													
В том числе по ГТПГ: В том числе поагрегатно:																
Ограничения мощности, всего В том числе по ГТПГ:																
В том числе по причинам:																
Технические (всего): в т.ч. по причинам поагрегатно Временные (всего): -Длительного действия (всего) в т.ч. по причинам поагрегатно -Сезонного действия (всего) в т.ч. по причинам поагрегатно -Апериодического действия (всего) в т.ч. по причинам поагрегатно -Лериодического действия (всего) в т.ч. по причинам поагрегатно																
Главный инженер подпись 20 _ г.	/ фамилия	/, и.о.		итель гене a OAO «С								фамил	 лия, _ г.	и.	<u>/</u> D.	

СОГЛАСОВАНО:

УТВЕРЖДАЮ:

Примечание:

В

приводится в приложении 2.

таблицу

соответствующий расчетный период. Суточная разбивка ограничений для каждого месяца

заносятся средневзвешенные величины ограничений

Приложение 9 Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

""	/ цпись фаг	20 _ г ЕМЫЕ С	Зам _/ фил o.	иала ОАС	енерального дире «СО ЕЭС» ОДУ	подпись	
Показатель	Код группы оборуд.	Код вида топлива	Станцио нный номер турбоаг регата	Код причины ограниче ний	Значен	ие показател Месяц	я (МВт)
Установленная мощность, всего			рсгата	пии			
В том числе по ГТПГ:							
В том числе поагрегатно:							
Ограничения мощности,							
всего							
В том числе по ГТПГ:							
В том числе по причинам:							
Технические (всего):							
в т.ч. по причинам							
поагрегатно							
Временные (всего):							
-Длительного действия							
(всего)							
в т.ч. по причинам							
поагрегатно -Сезонного действия							
-Сезонного оеиствия							
в т.ч. по причинам							
поагрегатно							
-Апериодического							
действия(всего)							
в т.ч. по причинам							
поагрегатно							
Главный инженер	/ фамилия	, и.о.					

Примечание: В таблицу заносятся средневзвешенные величины ограничений за соответствующий расчетный период. Суточная разбивка ограничений для каждого месяца приводится в приложении 2.

Приложение 10 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

КОДЫ ГРУПП ОБОРУДОВАНИЯ ТЕПЛОВЫХ И АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

Наименование группы оборудова	R ИН	Код
Полное	сокращенное	
Всего по ТЭС	Всего ТЭС	97
Конденсационные энергоблоки мощностью,		
МВт:		
1200	Блоки 1200	1
800	Блоки 800	2
500	Блоки 500	3
300	Блоки 300К	4
200	Блоки 200К	7
150	Блоки 150К	8
Энергоблоки с регулируемым отбором пара		
мощностью, МВт:		
300	Блоки 300Т	54
200	Блоки 200Т	57
150	Блоки 150Т	58
КЭС 90кгс/см ²	КЭС-90	11
ТЭЦ 240 кгс/см ²	ТЭЦ-240	5
ТЭЦ 130 кгс/см ² без промперегрева	ТЭЦ-130	10
ТЭЦ 130 кгс/см ² с промперегревом	ТЭЦ-130ПП	59
ТЭЦ 90 кгс/см ²	ТЭЦ-90	12
Несерийное отечественное оборудование*	Несерийное	6
Парогазовые установки	ПГУ	16
Газотурбинные установки	ГТУ	17
Прочее оборудование**	Прочее	21
Пусковые котельные действующих ТЭС	КП	18
Пиковые водогрейные котлы	ПВК	20
Атомные электростанции	АЭС	АЭС

^{*} Включаются энергоблоки с турбинами СВК-150-1 Черепетской ГРЭС и паросиловая часть МГД-

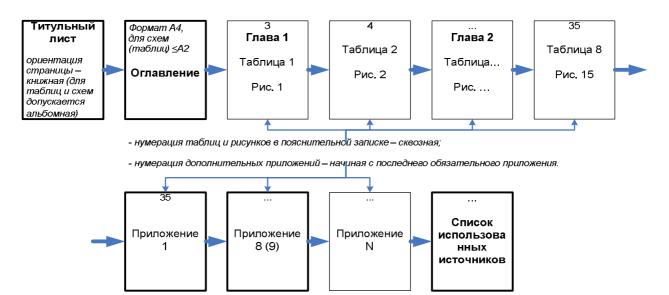
установки ГРЭС-24 ОГК-6.

** Включается оборудование иностранных фирм на давление пара 60-120 кгс/см², конденсационное и теплофикационное оборудование на давление пара до 45 кгс/см², энергопоезда и дизельные установки, солнечные и геотермальные электростанции.

Приложение 11 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

Пример математического распределения ограничений мощности турбоустановок, объединенных общегрупповыми (общестанционными ограничениями).

Ограничения мощности в связи с недостаточным потреблением пара промышленных параметров


ст. № ТГ	Турбина	Исходный вариант	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6
1	ΠT-60-130/13	-5	0	-5	-5	-6	-5	-5
2	ΠT-60-130/13	-5	0	0	-5	-6	-6	-5
3	ΠT-80/100-130/13	2	2	0	-2 *	-5	10	2
4	P-100-130/15	20	20	17	20	30	15	0
5	P-50-130/13	10	0	10	14	9	8	30
	Bcero	22	22	22	22	22	22	22

^{* -} при перераспределении ограничений учет дополнительного (сверх согласованного на этапе годового и месячного планирования) превышения максимальной технически возможной мощности над номинальной осуществляется в пределах максимальной мощности турбины, приведенной в паспортных данных.

Приложение 12 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ПРЕДСТАВЛЯЕМОЙ ДОКУМЕНТАЦИИ

1. Требования к оформлению пакета документов в печатном виде (рис. Π .12.1). Рис. Π .12.1

- 1.1 Пакет документов должен состоять из пояснительной записки, обязательных приложений (кроме приложения 2.1) в соответствии с Методическими настояшими указаниями, дополнительных приложений и прочих материалов, не охваченных приложениями (отчеты о проведении испытаний, нормативные документы и т.п.), использованных при расчете ограничений установленной мощности на расчетный период. В число дополнительных приложений в обязательном порядке включается нормативно-техническая документация электростанции (диаграммы режимов, поправочные кривые, номограммы градирен и т.п.). Допускается непредставление в печатном виде объемных дополнительных материалов (отчеты о проведении испытаний, нормативные документы, книги).
- **1.2** Пакет документов объемом до 200 листов представляется в количестве одного тома. При наличии объема документации более 200 листов допускается представления двух и более томов.
- **1.3** Пакет документов В целом, пояснительная записка, обязательное и дополнительное приложение и дополнительный материал заверяются подписями ответственного исполнителя. электростанции соответствующего филиала руководителя ИЛИ

(исполнительного аппарата) компании-собственника соответствующими печатями.

И

- 1.4 Первым разделом пояснительной записки должен являться титульный лист, содержащий название электростанции, компании собственника, период, на который производится расчет ограничений установленной мощности, и координаты ответственных исполнителей от электростанции или филиала (исполнительного аппарата) компании-собственника.
- **1.5** Вторым разделом пояснительной записки должно являться оглавление, содержащее полный перечень глав, обязательных и дополнительных приложений и материалов с обязательным приведением начальных страниц указанных разделов.
- **1.6** Последним разделом пояснительной записки должен являться список используемой литературы, содержащий печатные реквизиты всех материалов, на которые имеются ссылки в пояснительной записке и приложениях.
- 1.7 Каждое положение пояснительной записки, основывающееся на обращении к дополнительному материалу или приложению, обязательном порядке должно содержать соответствующий документ и его расположение в пояснительной записке (например, «приложение __ к настоящей пояснительной записке, стр. __»). В случае если дополнительный материал вследствие объема не включен в пояснительную записку, обязательном номер страницы порядке указывается соответствующего документа.
- **1.8** Нумерация страниц пакета документов сквозная, начиная с титульного листа и заканчивая перечнем используемой литературы.
- **1.9** Нумерация рисунков и таблиц в пояснительной записке сквозная, вне зависимости от их размещения в разделах (главах).
- **1.10** Нумерация дополнительных приложений должна начинаться с номера последнего обязательного приложения в соответствии с настоящими Методическими указаниями.
- **1.11** Формат представляемого пакета документов A4, для схем и таблиц допускается A3 (в исключительных случаях A2), сложенных до размера формата A4.
- **1.12** Ориентация страницы пояснительной записки книжная, для схем и таблиц допускается альбомная ориентация.
- **1.13** Формат шрифта Times New Roman, размер 14, при необходимости допускается размер 12. Межстрочный интервал 1,5.
- 2. Требования к оформлению пакета документов в электронном виде.
 - **2.1** Пакет документов в электронном виде представляется в филиал ОАО «СО ЕЭС» РДУ на CD (DVD). Структура корневого каталога CD (DVD) представлена на рис. П.12.2.

Рис. П.12.2

ОСНОВНАЯ ПАПКА

«Название электростанции, планируемый год (месяц)»

«ПОЯСНИТЕЛЬНАЯ ЗАПИСКА»

пояснительная записка в файле «Пояснительная записка, название электростанции, планируемый год (месяц) .pdf и .doc»

«ПРИЛОЖЕНИЯ»

обязательные приложения в файлах «Приложение №, название электростанции, планируемый год (месяц) **.pdf, .xls**»

дополнительные приложения в файлах «Приложение №, название электростанции, название приложения **.pdf**»

«НТД»

полные электронные копии действующих нормативных энергетических характеристик и паспортов основного и вспомогательного оборудования в файлах

«Название электростанции, название приложения .pdf»

«ПРОЧИЕ МАТЕРИАЛЫ»

дополнительные материалы, не охваченные приложениями (отчеты о проведении испытаний, расчетные методики, нормативные документы) в файлах

«Название электростанции, название документа .pdf»

- 2.2 Пакет документов должен содержать отсканированные копии всех разделов пакета документов в печатном виде и отсканированные копии всех дополнительных материалов, не вошедших в пакет документов в печатном виде, в том числе, включаются отсканированные копии нормативно-технической документации электростанции в полном объеме.
- 2.3 Пояснительная записка, обязательные и дополнительные приложения и прочие материалы должны располагаться в отдельных файлах. Название файла должно отражать его содержание (Например, «Приложение №, название электростанции, планируемый год (месяц)»).
- **2.4** Формат представления файлов AdobeReader, __.pdf, MS Excel (только для обязательных приложений). Пояснительная записка представляется также в формате MS Word, ___.doc.

Приложение 13 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

ПРИМЕР ОФОРМЛЕНИЯ РАСЧЕТА ОГРАНИЧЕНИЙ ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ

Расчет обеспеченности электрической мощности системами технического водоснабжения.

Описание причин возникновения ограничений установленной мощности

Установленная электрическая мощность Новой ТЭЦ определяется номинальной мощностью теплофикационных турбин ПТ-80/100-130/13 ст. №№ 1, 2 (ГТПГ1) и теплофикационных турбин Т-100/120-130 ст. №№ 3, 4 (ГТПГ2), и при номинальном отпуске тепла составляет 360 МВт. Изменений установленной мощности в _____ году не предполагается.

Ожидаемые ограничения установленной мощности обусловлены нижеследующими причинами.

- **1.** Малая, по сравнению с проектной, потребность в паре 13 кгс/см² на технологические нужды завода OAO « » является причиной ограничений мощности возникновения временных установленной действия турбоагрегатов ст. №№ 1, 2, обусловленных апериодического конструктивными особенностями турбин типа $\ll\Pi T\gg$, код причины возникновения ограничений – 425.
- 2. Номинальные параметры первой очереди системы технического водоснабжения (далее СТВС) и конденсаторов турбоагрегатов ст. №№ 1, 2 не позволяют обеспечить номинальную величину температуры охлаждающей воды на входе в конденсаторы в летние месяцы, что приводит к превышению вакуума в конденсаторах относительно нормативной величины и возникновению временных ограничений установленной мощности сезонного действия по причине повышения температуры охлаждающей воды на входе в конденсаторы, код причины возникновения ограничений 349.
- 3. Вторая очередь СТВС была спроектирована для работы с двумя градирнями типа _____ производительностью 18500 т/ч каждая. Вследствие недостаточного финансирования строительства вторая градирня достроена не была и остается в недостроенном состоянии по настоящий момент. Номинальный расход охлаждающей воды через конденсаторы турбоагрегатов ст. №№ составляет 16000 т/ч каждый. Дефицит охлаждающей воды составляет 18500-16000-16000=15500т/ч и обуславливает наличие временных ограничений установленной мощности сезонного действия турбоагрегатов ст. №№ по причине недостаточного количества градирен, код причины возникновения ограничений 341.

Описание системы технического водоснабжения

СТВС Новой ТЭЦ оборотная состоящая из двух очередей:

1 очередь – градирня ст. № 1 типа ____ площадью орошения 2100 м² и номинальным расходом охлаждающей воды 16000 т/ч; центральная насосная станция ст. № 1 (далее – ЦНС-1); паспортные характеристики градирни и циркуляционных насосов представлены в приложении 2.1 к Методическим указаниям по определению и согласованию ограничений установленной электрической мощности ТЭС и АЭС (далее Методические указания) (представлено ранее), выкопировки соответствующих страниц паспортов оборудования – в приложении __ к настоящей пояснительной записке, (стр.__).

Принципиальная схема первой очереди СТВС представлена в приложении _ к настоящей пояснительной записке (стр. _).

Циркуляция охлаждающей воды в контуре первой очереди системы технического водоснабжения Новой ТЭЦ обеспечивается тремя центробежными насосами ст. №№ 1, 2, 3 типа ______, установленными на ЦНС-1. Все циркнасосы объединены между собой на всасе (общим железобетонным каналом) и работают на общий напорный циркводовод.

Охлажденная в градирне вода подается циркнасосами в главный корпус на конденсаторы турбин и на вспомогательное оборудование.

В систему газоохлаждения генераторов цирквода поступает с напора специальных насосов газоохлаждения (НГО), подключенных к напору циркнасосов. На каждом турбоагрегате предусмотрено по два НГО (один рабочий, один резервный). Кроме того, с напора этих же НГО цирквода используется в котельном и турбинном отделении для охлаждения вращающихся механизмов, в холодильниках пробоотборных точек и др. В системы маслоохлаждения турбин цирквода также подается непосредственно с напора циркнасосов.

Возврат отработанной охлаждающей воды из систем газо- и маслоохлаждения турбоагрегатов и других вращающихся механизмов котельного и турбинного отделения осуществляется в аванкамеру (на всас циркнасосов) ЦНС-1.

Из главного корпуса нагретая вода по водоводам подается на охлаждение в градирню.

2 очередь — градирня ст. № 2 площадью орошения 2100 м² и номинальным расходом охлаждающей воды 18500 т/ч, центральная насосная станция ст. № 2 (далее — ЦНС-2), паспортные характеристики градирни и циркуляционных насосов представлены в приложении 2.1 к Методическим указаниям (представлено ранее), выкопировки соответствующих страниц паспортов оборудования — в приложении __ к настоящей пояснительной записке (на стр. _).

Принципиальная схема второй очереди СТВС представлена в приложении _ к настоящей пояснительной записке (на стр._).

Циркуляция охлаждающей воды в контуре второй очереди системы технического водоснабжения Новой ТЭЦ обеспечивается тремя

центробежными насосами ст. №№ 1, 2, 3 типа ______, установленными на ЦНС-2. Все циркнасосы объединены между собой на всасе (общим железобетонным каналом) и работают на общий напорный циркводовод).

Охлажденная в градирне вода подается циркнасосами в главный корпус на конденсаторы турбин и на вспомогательное оборудование.

В систему газоохлаждения генераторов цирквода поступает с напора НГО, подключенных к напору циркнасосов, на каждом турбоагрегате предусмотрено по два НГО (один рабочий, один резервный). Кроме того, с напора этих же НГО цирквода используется в котельном и турбинном отделении для охлаждения вращающихся механизмов, в холодильниках пробоотборных точек и др. В системы маслоохлаждения турбин цирквода подается непосредственно с напора циркнасосов.

Возврат отработанной охлаждающей воды из систем газо- и маслоохлаждения турбоагрегатов и других вращающихся механизмов котельного и турбинного отделения осуществляется в аванкамеру (на всас циркнасосов) ЦНС-2.

Из главного корпуса нагретая вода по водоводам подается на охлаждение в градирню.

Исходные данные

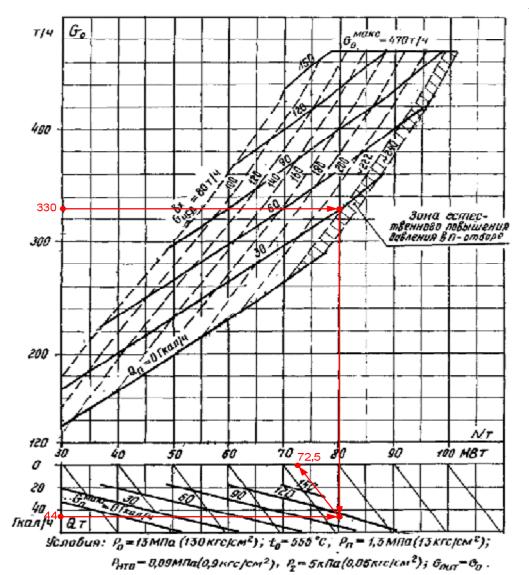
Среднемесячная температура наружного воздуха в июле месяце составляет 25°С (таблица __ пояснительной записки, справка от метеослужбы представлена в приложении __ к настоящей пояснительной записке (на стр. _). Расчет исходных метеорологических параметров представлен в приложении __ к настоящей пояснительной записке (на стр. _).

Прогноз тепловых нагрузок представлен в приложении __ к настоящей пояснительной записке (стр. _). Прогнозный отпуск тепла с горячей водой и с паром 13 кгс/см² внешним потребителям и потребителям собственных нужд определен согласно статистике за предыдущие 36 месяцев, сводная таблица отпуска тепла представлена в приложении 3 к настоящей пояснительной записке, стр. __.

Параметры отпускаемого пара 13 кгс/см² определены договором с ОАО «____» (приложение __ к настоящей пояснительной записке, стр. _) и не допускают отклонения давления более ± 0.2 кгс/см², чем обусловлена невозможность работы турбоагрегатов ст. №№ 1, 2 ПТ-80/100-130/13 в зоне естественного повышения давления в камере производственного отбора.

Распределение тепловых нагрузок между отборами турбин представлено в приложении 4 к настоящей пояснительной записке (на стр. _).

Наличие отпуска тепла с горячей водой от бойлерных установок турбоагрегатов ст. №№ 1, 2 ПТ-80/100-130/13 обусловлено потребностью ОАО «_______» в горячей воде и невозможностью покрытия данной нагрузки бойлерными установками турбоагрегатов ст. № 3, 4, поскольку схемой теплосети Новой ТЭЦ (приложение _ к настоящей пояснительной записке, стр. _) не предусмотрено наличия перемычек между подающими коллекторами


горячей воды и дополнительных источников теплоснабжения указанного потребителя (ПВК, пиковые бойлера и т.п.).

Согласно прогнозу распределения тепловых нагрузок для турбоагрегатов ст. №№ 1, 2:

расход пара в производственный отбор: $D_{\pi l(2)} = 30 \text{т/ч}$; расход пара в теплофикационный отбор: $D_{\pi l(2)} = 80 \text{т/ч}$.

При эксплуатационных расходах пара из регулируемых отборов по диаграмме режимов работы турбоагрегатов ст. №№ 1, 2 (приведена в приложении ___, стр.__ настоящей пояснительной записки) определяется максимально возможный расход пара в голову турбины и соответствующая максимальная электрическая нагрузка:

Рис. ___.

расход пара в голову турбины:

 $D_{01(2)} = 330 \text{T/H};$

электрическая нагрузка:

 $N_{01(2)} = 72,5MBm$;

Расход пара на регенерацию принимается в размере 25% от расчетного расхода пара в голову турбины. Данная величина получается согласно нормативной характеристике при полностью включенной системе

регенеративного подогрева (характеристики приведены в приложении ___ к настоящей пояснительной записке, стр. _):

$$D_{0 per 1(2)} = 0.25 \cdot D_{01(2)} = 0.25 \cdot 330 = 82.5 \text{T/y};$$

Таким образом, исходя из формулы 5.1 Методических указаний расход пара в конденсатор:

$$D_{0 \text{ k} 1(2)} = D_{01(2)} - D_{\pi 1(2)} - D_{\pi 1(2)} - D_{0 \text{ per} 1(2)} = 330 - 30 - 80 - 82,5 = 137,5 \text{ T/Y}.$$

Согласно прогнозу распределения тепловых нагрузок для турбоагрегатов ст. №№ 3, 4:

расход пара в теплофикационный отбор: $D_{x3} = 100 \text{ T/y}$, $D_{T4} = 0T/4$ турбоагрегате ст. № 4 на протяжении всего расчетного месяца запланирован капитальный ремонт, график представлен ремонтов приложении __ к настоящей пояснительной записке, стр. _).

При эксплуатационных расходах пара из регулируемых отборов по диаграммам режимов работы турбоагрегатов ст. №№ 3, 4 при одноступенчатом подогреве сетевой воды и конденсационном режиме работы соответственно (приложение _ , стр. _-_ настоящей пояснительной записки) определяется максимально возможный расход пара в голову турбины и соответствующая максимальная электрическая нагрузка. Одноступенчатый режим подогрева обусловлен отсутствием необходимости поддержания температуры прямой сетевой воды для нужд горячего водоснабжения свыше 95°C.

Рис. ___. Ψεκοδυπ. $P_{a}=13$ ΜΠα (130 κτο/εm²); $t_{a}=555$ °C; $\theta_{a,b}=D_{a}$; $P_{a}=0.005$ ΜΠα (0.05 κτο/εm²); $t_{a,b}=$ -puc. 6; $t_{a,c}=$ puc. 7 в) Пример пользования диаграммай режимов $MBT | N_{\tau}$ 0_=0,05МЛи(0,3 к<u>гс</u> / см² P_{...}= 0,05MD±(0,5xec)(n²) 60,0 58 2.80 400

расход пара в голову турбины:

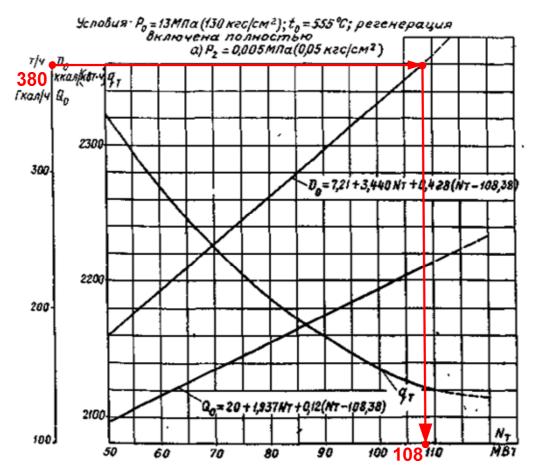
 $D_{03} = 445 \text{ T}/\text{ y}$;

электрическая нагрузка:

 $N_{03} = 112MBT$.

Величина электрической мощности турбины ст. № 3 определена при величине давления в нижнем теплофикационном отборе равной 1 кгс/см². Расчет величины давления в отборе в зависимости от температуры прямой и

обратной сетевой воды представлен в приложении ___ к настоящей пояснительной записке, (на стр. _).


Расход пара на регенерацию принимается в размере 25% от расчетного расхода пара в голову турбины. Данная величина получается согласно нормативной характеристике при полностью включенной системе регенеративного подогрева (характеристики приведены в приложении __ к настоящей пояснительной записке, стр. _):

$$D_{0 per 3} = 0.25 \cdot D_{03} = 0.25 \cdot 445 = 111.25 \text{T/y};$$

Таким образом, исходя из формулы 5.1 Методических указаний расход пара в конденсатор:

$$D_{0_{K3}} = D_{03} - D_{T3} - D_{0_{DET3}} = 445 - 100 - 111,25 = 233,75_{T}/\Psi$$
.

Рис. ___.

 $D_{04} = 380 \text{т/ч}$; $N_{04} = 108 MBm$, что подтверждается паспортными данными.

$$\begin{split} &D_{0\,\mathrm{per}\,4} = 0.25 \cdot D_{0\,4} = 0.25 \cdot 380 = 95\,\mathrm{T}\,/\,\mathrm{Y}\,; \\ &D_{0\,\mathrm{K}\,4} = D_{0\,4} - D_{_{\mathrm{T}\,4}} - D_{0\,\mathrm{ner}\,4} = 380 - 0 - 95 = 285\,\mathrm{T}\,/\,\mathrm{Y}\,. \end{split}$$

Расчет ограничений установленной мощности турбоагрегатов ст. №№ 1, 2, обусловленных отсутствием паровых нагрузок и конструктивными особенностями турбин типа «П», «ПТ», «Р», «ПТР»

Согласно диаграмме режимов работы турбоагрегатов ст. №№ 1, 2 (рис. ___) при прогнозируемых величинах отпуска тепла из регулируемых отборов электрическая нагрузка составит:

$$N_{01(2)} = 72,5MBm$$
;

величина ограничений составит:

$$N_{\text{orp }425 \ \text{I}(2)} = N_{\text{Hom }\text{I}(2)} - N_{01(2)} = 80 - 72,5 = 7,5 MBm$$
 .

Расчет ограничений установленной мощности турбоагрегатов ст. №№ 1, 2 по причине повышенной температуры охлаждающей воды на входе в конденсаторы

Расчетный расход циркуляционной воды в контуре первой очереди CTBC определяется как минимальная из следующих величин:

суммы номинальных расходов охлаждающей воды через конденсаторы (приложение 2.1 к Методическим указаниям, представлено ранее):

$$W_{_{\rm K}1} + W_{_{\rm K}1} = 8000 + 8000 = 16000 {\rm T} \, / \, {\rm Y}$$
 ;

суммарной номинальной подачи циркуляционных насосов ЦНС-1 (приложение 2.1 к Методическим указаниям, представлено ранее), характеристика параллельной работы циркнасосов отсутствует:

$$W_{_{\rm IIH}1\text{--}1} + W_{_{\rm IIH}2\text{--}1} + W_{_{\rm IIH}3\text{--}1} = 10000 + 10000 + 10000 = 30000_{\rm T} \, / \, \rm y$$
 ;

номинального расхода воды через градирню ст.№1 (приложение 2.1 к Методическим указаниям, представлено ранее):

$$W_{rp1} = 16000 T / ч$$
;

Поскольку возврат воды в схеме СТВС осуществляется на всас циркнасосов, и суммарная производительность ЦНС-1 позволяет обеспечить расход воды через конденсаторы и градирню с учетом необходимости подачи воды на охлаждение вспомогательных механизмов, расход воды через конденсаторы равен расходу воды через градирню:

$$W_{pacq 1} = W_{rp1} = 16000 T / Y$$
.

Расчетный расход охлаждающей воды через конденсаторы турбоагрегатов ст.№1,2 определяется пропорционально номинальным расходам по формуле 11.2 Методических указаний:

$$W_{\kappa l}^{pac \mathtt{q}} = W_{\kappa 2}^{pac \mathtt{q}} = \frac{W_{\kappa l (\kappa 2)}^{pac \mathtt{q}}}{W_{\kappa l}^{\mathsf{HOM}} + W_{\kappa 2}^{\mathsf{HOM}}} \cdot W_{pac \mathtt{q} \, l} = \frac{8000}{8000 + 8000} \cdot 16000 = 8000 \mathrm{T} \, / \, \mathtt{q} \, .$$

Тепловая нагрузка первой очереди СТВС (формула 11.3 Методических указаний) составляет:

$$U_{01} = D_{0\kappa 2} \cdot \Delta h_1 + D_{0\kappa 2} \cdot \Delta h_2 = 137,5 \cdot 550 + 137,5 \cdot 550 = 151250$$
 Мкал / ч,

где $\Delta h_{\rm i}$ =550 ккал/кг — разность теплосодержаний отработавшего пара и конденсата согласно h-s диаграмме при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины.

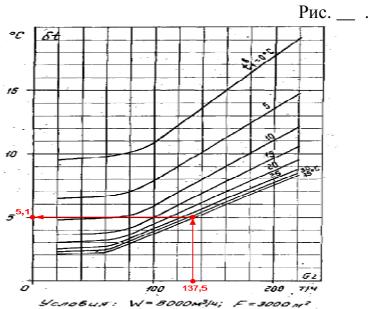
Удельная тепловая нагрузка первой очереди СТВС (формула 11.4 Методических указаний) составляет:

$$u_{cp1} = \frac{U_{01}}{F_{rp1}} = \frac{151250}{2100} = 72 \frac{M \kappa a \pi}{M^2 \cdot q}$$
.

Средневзвешенный перепад температур охлаждающей воды в градирне ст.№1 первой очереди СТВС (формула 11.5 Методических указаний) составляет:

$$\Delta t_{rp1} = \frac{u_{cp1} \cdot F_{rp1}}{\gamma \cdot C \cdot W_{pacq 1}} = \frac{72 \cdot 2100}{1 \cdot 16000} = 9,5^{\circ}C,$$

где произведение плотности воды γ и удельной теплоемкости воды С принимается равным 1 (согласно п. 11.1.1.8 Методических указаний).


Нагрев охлаждающей воды в конденсаторах турбоагрегатов ст. №№ 1, 2 (формула 11.8 Методических указаний) составляет:

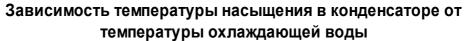
$$\Delta t_{0\,{\rm kl}({\rm K2})} = \frac{D_{0\,{\rm kl}({\rm K2})} \cdot \Delta h_{\rm l(2)}}{W_{\rm kl}({\rm K2})} = \frac{137.5 \cdot 550}{8000} = 9.5^{\circ}C.$$

Определим допустимую паровую нагрузку исходя из следующих критериев:

- по условиям предельно допустимого давления отработавшего пара в конденсаторах турбин $p_2 = 12$ кПа $(0,12 \text{ кгс/см}^2)$, $t_{np}'' = 49,1$ °C.
- по техническим условиям эксплуатации МГО t_2^{cb} ≤ 33 °C.

Задаемся несколькими произвольными значениями температуры воды на входе в конденсаторы турбоагрегатов ст. \mathbb{N} 1, 2 в диапазоне от 15°C до 35°C с шагом 5°C. Для каждого значения температуры по номограмме температурных напоров конденсаторов (приложение __ к настоящей пояснительной записке, стр. _) определяются температурные напоры в конденсаторах.

По формуле 11.7 Методических указаний рассчитывается соответствующая температура насыщения в конденсаторе:


$$t_{\kappa 1(\kappa 2)}^{\text{\tiny HAC}} = t_{\rm rp1}^{} + \Delta t_{\kappa 1(\kappa 2)}^{} + \delta t_{\kappa 1(\kappa 2)}^{} = 33 + 9,\! 5 + 5,\! 1 = 47,\! 6^{\circ} C$$
 .

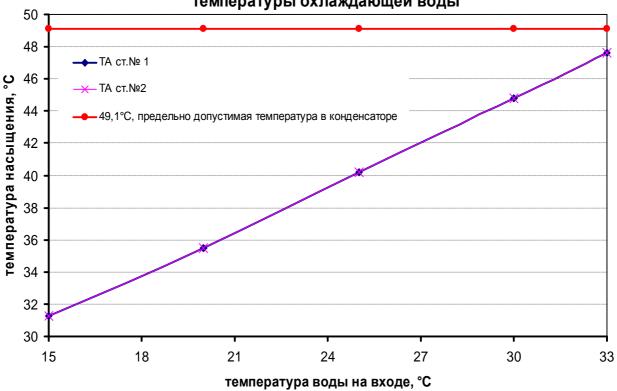
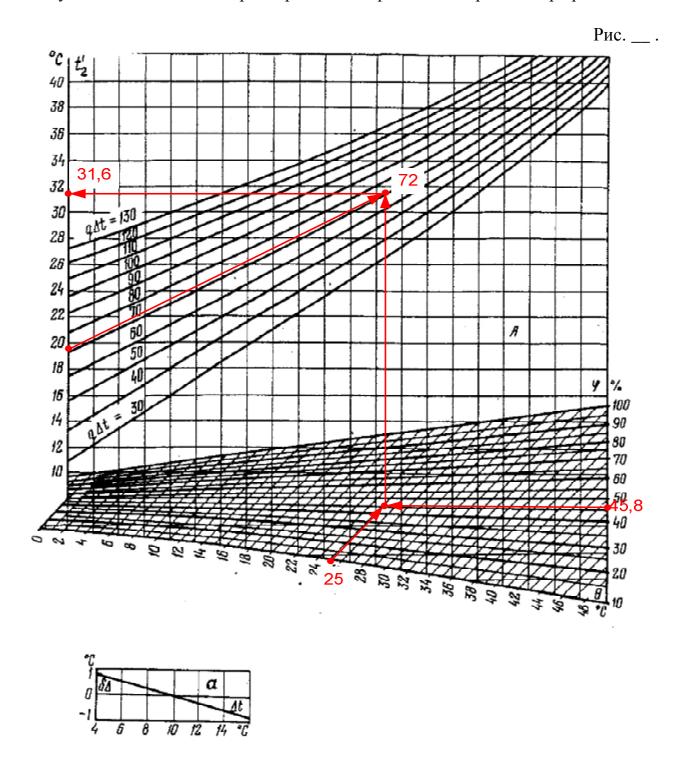

Аналогичным образом рассчитываются температуры насыщения для остальных температур охлаждающей воды на входе в конденсаторы. Результаты сводятся в таблицу, и строится график зависимости температуры насыщения от температуры на входе.

Таблица _.

ТА ст.№ 1 ПТ-80/100-130/13										
$W_{\kappa} = 8000 \text{ m/u}, F = 3000 \text{ m}^2$										
t_{rp1}	$Dt_{\kappa 1}$	$\mathrm{d} \mathfrak{t}_{\kappa 1}$	t ^{nac} K1							
33	9,5	5,1	47,6							
30	9,5	5,3	44,8							
25	9,5	5,7	40,2							
20	9,5	6,0	35,5							
15	9,5	6,8	31,3							

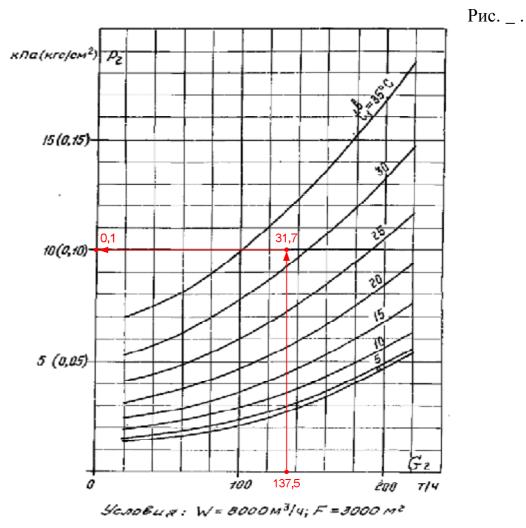
Рис. _.



Во всем диапазоне температур охлаждающей воды на входе в конденсатор предельно допустимая температура насыщения не достигается, ограничения паровой нагрузки конденсаторов, обусловленные достижением предельно допустимого вакуума (0,12кгс/см²), отсутствуют.

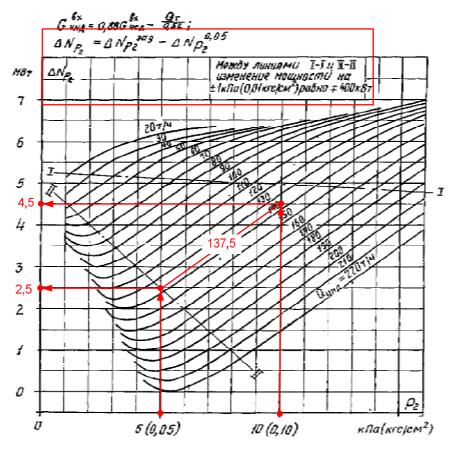
Среднемесячная температура наружного воздуха в июле месяце составляет 25°С, расчетная относительная влажность при данной температуре наружного воздуха — 45,8 % (таблица __ пояснительной записки). Согласно номограмме градирни ст. № 1 (приложение __ к настоящей пояснительной записке, стр. __) температура воды на выходе из градирни и, соответственно,

температура охлаждающей воды на входе в конденсаторы турбоагрегатов ст. №№ 1, 2 31,6°С. Поправкой на расчетный перепад температур воды в градирне в виду ее малой величины пренебрегаем, поправка на скорость ветра равна 0.



Температура насыщения в конденсаторах турбоагрегатов ст. №№ 1, 2 составит:

$$t_{\kappa 1 (\kappa 2)}^{\text{ hac inoth}} = t_{rp1}^{\text{ inoth}} + \Delta t_{\kappa 1 (\kappa 2)} + \delta t_{\kappa 1 (\kappa 2)}^{\text{ inoth}} = 31.6 + 9.5 + 5.1 = 46.2 ^{\circ} C \; .$$


Соответствующая величина вакуума в конденсаторах согласно номограмме изменения давления в конденсаторе (приложение _ к настоящей

пояснительной записке, стр. _) при расчетном расходе пара в конденсатор 137,5 т/ч составит $0.1~{\rm krc/cm}^2$:

Поправка к электрической мощности турбоагрегата на отклонение фактической величины вакуума в конденсаторе $(0,1 \text{ кгс/cm}^2)$ от номинальной $(0,05 \text{ кгс/cm}^2)$ согласно номограмме поправок на давление отработавшего пара (приложение _ к настоящей пояснительной записке, стр. _) составит:

Рис. ___.

 $\Delta N_{P_2} = 4.5 - 2.5 = 2MBT$.

Результаты расчетов ограничений по кодам 225 и 349 приведены в таблице __.

Таблица _.

Θ_{HB}	t _{rp1}	N _{HOM}	\mathbf{D}_0	\mathbf{D}_{π}	$\mathbf{D}_{\scriptscriptstyle \mathrm{T}}$	N ₀	$\mathbf{D}_{0\kappa}$	\mathbf{p}_2	DN _{p2}	N _{pacn}	N _{огр425}	N _{огр349}
$^{\circ}C$	$^{\circ}C$	MBm	т/ч	т/ч	т/ч	MBm	т/ч	кгс/см²	MBm	MBm	MBm	MBm
	ТА ПТ-80/100-130/13 ст. № 1											
25,0	31,6	80,0	330,0	30,0	80,0	73,0	137,5	0,1	-2,0	71,0	7,0	2,0
	ТА ПТ-80/100-130/13 ст. № 2											
25,0	31,6	80,0	330,0	30,0	80,0	73,0	137,5	0,1	-2,0	71,0	7,0	2,0

Расчет ограничений установленной мощности турбоагрегатов ст. №№ 3, 4 по причине недостаточного количества градирен по проекту

Расчетный расход циркуляционной воды во второй очереди CTBC определяется как минимальная из следующих величин:

суммы номинальных расходов охлаждающей воды через конденсаторы (приложение 2.1 к Методическим указаниям, представлено ранее):

$$W_{\kappa 3} + W_{\kappa 4} = 16000 + 16000 = 32000 \text{T/y};$$

суммарной номинальной подачи циркуляционных насосов ЦНС-2 второй очереди СТВС (приложение 2.1 к Методическим указаниям, представлено ранее), характеристика параллельной работы циркнасосов отсутствует:

$$W_{_{IIH}12} + W_{_{IIH}32} + W_{_{IIH}32} + W_{_{IIH}42} + W_{_{IIH}42} + W_{_{IIH}52} = 10000 + 10000 + 10000 + 10000 + 10000 + 10000 = 50000 r / \text{y};$$

номинального расхода воды через градирню ст. № 2 (приложение 2.1 к Методическим указаниям, представлено ранее):

$$W_{rp2} = 18500 \text{T/H};$$

$$W_{pac42} = W_{rp2} = 18500 \text{T/H}.$$

Поскольку возврат воды в схеме СТВС осуществляется на всас циркнасосов, и суммарная производительность ЦНС-2 позволяет обеспечить расход воды через конденсаторы и градирню с учетом необходимости подачи воды на охлаждение вспомогательных механизмов, расход воды через конденсаторы равен расходу воды через градирню. Расчетный расход охлаждающей воды через конденсаторы турбоагрегатов ст. № 3, 4 определяется пропорционально номинальным расходам:

$$W_{\kappa^3}^{\text{pacq}} = W_{\kappa^4}^{\text{pacq}} = \frac{W_{\kappa^3(\kappa^4)}^{\text{pacq}}}{W_{\kappa^3}^{\text{HoM}} + W_{\kappa^4}^{\text{HoM}}} \cdot W_{\text{pacq}} = \frac{16000}{16000 + 16000} \cdot 18500 = 9250 \text{T/y}.$$

Тепловая нагрузка второй очереди СТВС (формула 11.3 Методических указаний) составляет:

$$U_{02} = D_{0\,\kappa\,3} \cdot \Delta h_3 + D_{0\,\kappa\,4} \cdot \Delta h_4 = 233,75 \cdot 550 + 285 \cdot 535 = 281037,5 M \kappa a \pi / \, \mathrm{q} \; , \; \Gamma \mathrm{дe}$$

где Δh_3 =550 ккал/кг, Δh_4 =535 ккал/кг — разность теплосодержаний отработавшего пара и конденсата согласно h-s диаграмме при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины.

Удельная тепловая нагрузка второй очереди СТВС (формула 11.4 Методических указаний) составляет:

$$u_{cp\,2}=rac{U_{\,0\,2}}{F_{rp\,2}}=rac{281037.5}{2100}=133.8rac{M \kappa a \pi}{m^2\cdot q}$$
, что превышает предельно допустимую

удельную тепловую нагрузку 130,0 $\frac{\text{Мкал}}{\text{м}^2 \cdot \text{ч}}$ (согласно нормативной характеристике

градирни ст. № 2 приложение _ к настоящей пояснительной записке, стр. _). В связи с этим необходимо снизить расходы пара в конденсаторы турбоагрегатов ст. №№ 3, 4 и тепловую нагрузку на градирню до максимально допустимой величины:

$$D_{\kappa 3} = D_{0 \kappa 3} \frac{u_{\text{max } 2}}{u_{\text{cp } 2}} = 233,75 \cdot \frac{130}{133,8} = 227,1\text{T/H};$$

$$D_{\kappa 4} = D_{0 \, \kappa 4} \, \frac{u_{\text{max 2}}}{u_{\text{cp 2}}} = 285 \cdot \frac{130}{133,8} = 276,9 \, \text{T/Y} .$$

Расход пара на регенерацию принимается в размере 25% от расчетного расхода пара в голову турбины. Данная величина получается согласно нормативной характеристике при полностью включенной системе

регенеративного подогрева (характеристики приведены в приложении __ к настоящей пояснительной записке, стр. _):

Скорректированные эксплуатационные параметры турбоагрегатов ст. № 3, 4 составят (формулы 11.13, 11.3, 11.4 Методических указаний):

$$\begin{split} & D_{\text{per3}}^{\text{kop}} = 0,25 \cdot D_{03}^{\text{kop}} = 0,25 \cdot 436,1 = 109,0\text{T/y} \,, D_{03}^{\text{kop}} = \frac{D_{\text{T}3} + D_{\text{K}3}}{0,75} = \frac{100 + 227,1}{0,75} = 436,1\text{T/y} \,; \\ & D_{\text{per4}}^{\text{kop}} = 0,25 \cdot D_{04}^{\text{kop}} = 0,25 \cdot 369,2 = 92,3\text{T/y} \,, D_{04}^{\text{kop}} = \frac{D_{\text{T}4} + D_{\text{K}4}}{0,75} = \frac{0 + 276,9}{0,75} = 369,2\text{T/y} \,; \\ & U_{02}^{\text{kop}} = D_{\text{K}3} \cdot \Delta h_3 + D_{\text{K}4} \cdot \Delta h_4 = 227,1 \cdot 550 + 276,9 \cdot 535 = 273046,5M\kappa a\pi/y \,; \\ & U_{\text{cp}2}^{\text{kop}} = \frac{U_{02}^{\text{kop}}}{F_{\text{rp2}}} = \frac{273046,5}{2100} = 130,0 \frac{M\kappa a\pi}{M^2 \cdot y} \,. \end{split}$$

Средневзвешенный перепад температур охлаждающей воды в градирне ст. № 2 второй очереди СТВС (формула 11.5 Методических указаний) составляет:

$$\Delta t_{\rm rp2} = \frac{u_{\rm cp2}^{\rm kop} \cdot F_{\rm rp2}}{g \cdot C \cdot W_{\rm pac+2}} = \frac{130,0 \cdot 2100}{1 \cdot 18500} = 14,8^{\circ}C,$$

где произведение плотности воды γ и удельной теплоемкости воды С принимается равным 1 (согласно п. 11.1.1.8 Методических указаний).

Нагрев охлаждающей воды в конденсаторах турбоагрегатов ст. №№ 3, 4 (формула 11.8 Методических указаний) составляет:

$$\Delta t_{\kappa 3}^{\text{pac4}} = \frac{D_{\kappa 3} \cdot \Delta h_3}{W_{\kappa 3}^{\text{pac4}}} \cdot = \frac{227,1 \cdot 550}{9250} = 13,5^{\circ}C;$$

$$\Delta t_{\kappa 4}^{\text{pac4}} = \frac{D_{\kappa 4} \cdot \Delta h_4}{W_{\kappa 4}^{\text{pac4}}} \cdot = \frac{276,9 \cdot 535}{9250} = 16,0^{\circ}C.$$

Задаются произвольные значениями удельной тепловой нагрузки, меньшими расчетной с шагом в $10,0\frac{M\kappa an}{M^2\cdot y}$; задаются произвольные величины

температуры наружного воздуха в диапазоне от 5°C до 30°C с шагом 5°C. Для каждого значения температуры наружного воздуха и соответствующей расчетной относительной влажности определяются величины температуры воды на выходе из градирни, которые корректируются с учетом поправок на скорость ветра и средневзвешенный перепад температур в градирне. Полученные значения сводятся в таблицу _ , по которой строится зависимость $t_{rp2} = f\left(u_{cp};\Theta_{HB}\right)$ (рис _).

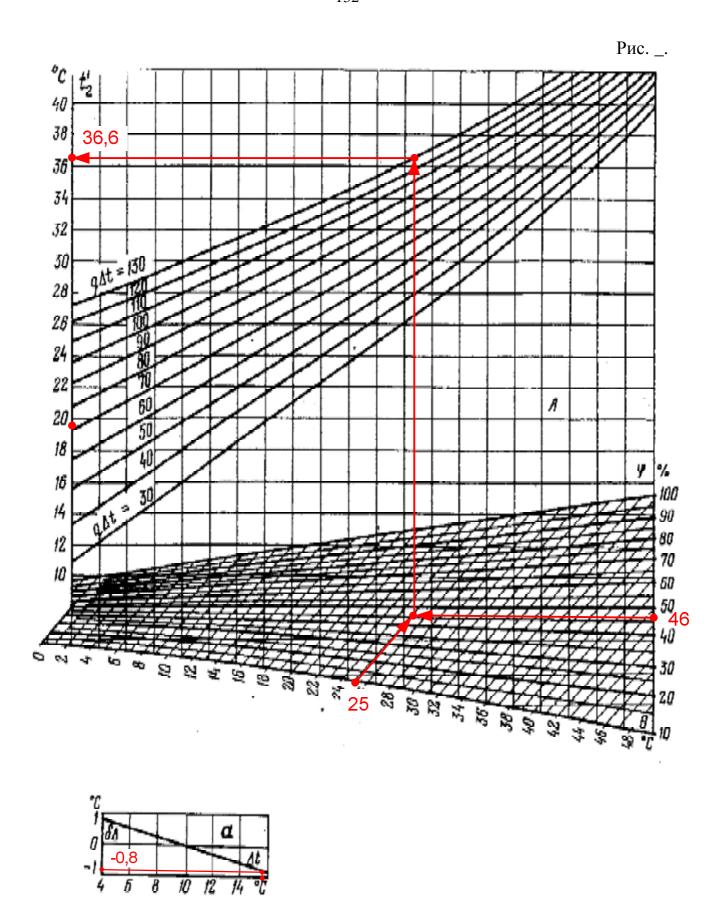
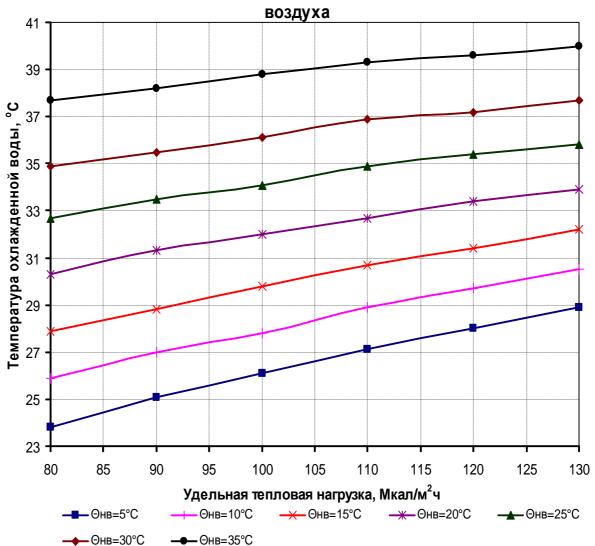
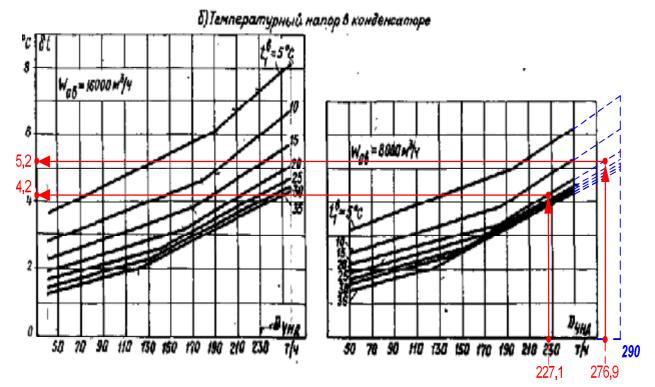



Таблица ___.

\mathbf{u}_{cp}	Dt_{rp2}	Θ_{HB}	φ, %	t _{гр2-0} , °C	D _{Dtrp2} , °C	D _w , °C	t _{rp2} , °C
		5	73,2	29,7	-0,8	0	28,9
		10	63,7	31,3	-0,8	0	30,5
130	14,8	15	56,3	33	-0,8	0	32,2
130	14,0	20	50,5	34,7	-0,8	0	33,9
		25	45,8	36,6	-0,8	0	35,8
		30	42	38,5	-0,8	0	37,7
		35	39,8	40,8	-0,8	0	40
		5	73,2	28,5	-0,5	0	28
		10	63,7	30,2	-0,5	0	29,7
120	12.6	15	56,3	31,9	-0,5	0	31,4
120	13,6	20	50,5	33,9	-0,5	0	33,4
		25	45,8	35,9	-0,5	0	35,4
		30	42	37,7	-0,5	0	37,2
		35	39,8	40,1	-0,5	0	39,6
		5	73,2	27,4	-0,3	0	27,1
		10	63,7	29,2	-0,3	0	28,9
110	10.5	15	56,3	31	-0,3	0	30,7
110	12,5	20	50,5	33	-0,3	0	32,7
		25	45,8	35,2	-0,3	0	34,9
		30	42	37,2	-0,3	0	36,9
		35	39,8	39,6	-0,3	0	39,3
		5	73,2	26,3	-0,2	0	26,1
		10	63,7	28	-0,2	0	27,8
100	11.4	15	56,3	30	-0,2	0	29,8
100	11,4	20	50,5	32,2	-0,2	0	32
		25	45,8	34,3	-0,2	0	34,1
		30	42	36,3	-0,2	0	36,1
		35	39,8	39	-0,2	0	38,8
		5	73,2	25,1	0	0	25,1
		10	63,7	27	0	0	27
00	10.0	15	56,3	28,8	0	0	28,8
90	10,2	20	50,5	31,3	0	0	31,3
		25	45,8	33,5	0	0	33,5
		30	42	35,5	0	0	35,5
		35	39,8	38,2	0	0	38,2
		5	73,2	23,6	0,2	0	23,8
		10	63,7	25,7	0,2	0	25,9
00	0.1	15	56,3	27,7	0,2	0	27,9
80	9,1	20	50,5	30,1	0,2	0	30,3
		25	45,8	32,5	0,2	0	32,7
		30	42	34,7	0,2	0	34,9
		35	39,8	37,5	0,2	0	37,7


Рис.

Зависимость температуры воды на выходе из градирни от удельной тепловой нагрузки и температуры наружного

Задаемся несколькими произвольными значениями температуры воды на входе в конденсаторы турбоагрегатов ст. $\mathbb{N}^{0}\mathbb{N}^{0}$ 3, 4 в диапазоне от 15°C до 35°C с шагом 5°C. Для каждого значения температуры по номограмме температурных напоров конденсаторов (приложение _ к настоящей пояснительной записке, стр. _) определяются температурные напоры в конденсаторах.

Рис. _.

По формуле 11.7 Методических указаний рассчитывается соответствующая температура насыщения в конденсаторе:

$$\begin{split} t_{_{\mathrm{K}3}}^{_{\mathrm{HAC}}} &= t_{_{\mathrm{\Gamma}\mathrm{p}2}} + \Delta t_{_{\mathrm{K}3}} + dt_{_{\mathrm{K}3}} = 15 + 13.5 + 4.2 = 32.7^{\circ}C \ ; \\ t_{_{\mathrm{K}4}}^{_{\mathrm{HAC}}} &= t_{_{\mathrm{\Gamma}\mathrm{p}2}} + \Delta t_{_{\mathrm{K}4}} + dt_{_{\mathrm{K}4}} = 15 + 16.0 + 5.2 = 36.2^{\circ}C \end{split}$$

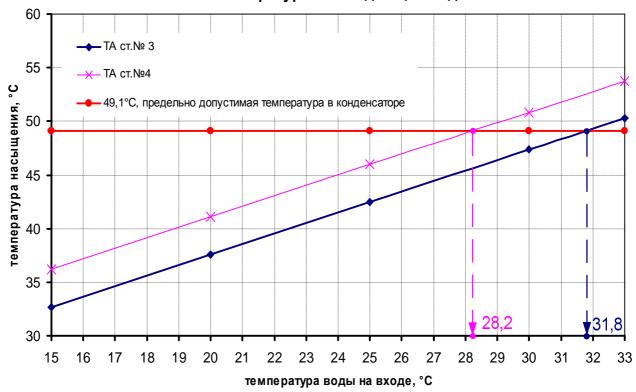

Аналогичным образом рассчитываются температуры насыщения для остальных значений температур охлаждающей воды на входе в конденсаторы. Результаты сводятся в таблицу, и строится график зависимости температуры насыщения от температуры на входе в конденсаторы.

Таблица ___.

TA c	т.№ 3 Т	-100/120)-130	ТА ст.№ 4 Т-100/120-130							
$W_{\scriptscriptstyle K} =$	8000 m/v	F = 620	00M^2	$W_{\kappa} = 8000 \text{ m/u}, F = 6200 \text{ m}^2$							
t_{rp2}	Dt _{k3}	$\mathrm{d}t_{\kappa3}$	t ^{nac} _{κ3}	t_{rp2}	Dt _{к4}	$\mathrm{d} t_{\kappa 4}$	t ^{nac} K4				
33	13,5	3,8	50,3	33	16	4,7	53,7				
30	13,5	3,9	47,4	30	16	4,8	50,8				
25	13,5	4	42,5	25	16	4,9	46				
20	13,5	4,1	37,6	20	16	5,0	41,1				
15	13,5	4,2	32,7	15	16	5,2	36,2				

Рис.

Зависимость температуры насыщения в конденсаторе от температуры охлаждающей воды

Полученные точки 28,2°С и 31,8°С являются граничными и указывают на то, что при превышении температуры охлаждающей воды на входе в конденсатор относительно данной величины температура насыщения в конденсаторе становится выше допустимой, и возникает необходимость снижения расхода пара в конденсатор. Третьей граничной точкой является температура охлаждающей воды равная 33°С по условиям работы системы МГО.

Для каждой граничной точки по номограмме температурных напоров конденсаторов (приложение _ к настоящей пояснительной записке, стр. __) определяются соответствующие температурные напоры, и рассчитывается температура насыщения в конденсаторах. Для граничной точки 33°C температуры насыщения составят:

$$t_{\kappa 3}^{\text{Hac } 33} = t_{\text{rp2}}^{33} + \Delta t_{\kappa 3} + \delta t_{\kappa 3}^{33} = 33 + 13.5 + 3.8 = 50.3 ^{\circ}\text{C};$$

$$t_{\kappa 4}^{\text{Hac } 33} = t_{\text{rp2}}^{33} + \Delta t_{\kappa 4} + \delta t_{\kappa 4}^{33} = 33 + 16.0 + 4.7 = 53.7 ^{\circ}\text{C}.$$

Коэффициенты снижения паровой нагрузки (формула 11.9 Методических указаний) составят:

$$\chi_{\kappa 3}^{33} = \frac{t_{\text{пред}}^{\text{Hac}} - t_{\text{гр2}}^{33}}{t_{\kappa 3}^{\text{Hac} 33} - t_{\text{гр2}}^{33}} = \frac{49{,}1{-}33}{50{,}3{-}33} = 0{,}931;$$

$$\chi_{\kappa 4}^{33} = \frac{t_{npe, 1}^{Hac} - t_{np2}^{33}}{t_{\kappa 4}^{Hac 33} - t_{np2}^{33}} = \frac{49, 1 - 33}{53, 7 - 33} = 0,778.$$

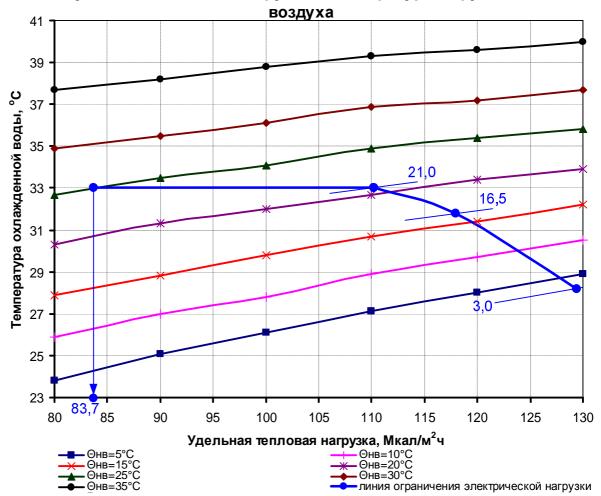
Скорректированные расходы пара в конденсаторы составят:

$$D_{\kappa 3}^{33} = D_{\kappa 3} \cdot \chi_{\kappa 3}^{33} = 227, 1 \cdot 0,931 = 211,3T/\Psi;$$

$$D_{_{\kappa4}}^{33}=D_{_{\kappa4}}\cdot\chi_{_{\kappa3}}^{33}=276{,}9\cdot0{,}931=215{,}4{_T}\,/\,_{Y}$$
 .

Аналогичные расчеты проводятся для граничных точек $28,2^{\circ}$ С и $31,8^{\circ}$ С. Результаты расчетов сведены в таблицу _ .

Таблица _.


ТА ст.№ 3 Т-100/120-130											
$W_{\kappa} = 8000 \text{ m/ч}, F = 6200 \text{ m}^2$											
t_{rp2}	$Dt_{\kappa 3}$	$\mathrm{dt}_{\kappa3}$	t ^{nac} _{k3}	χ	$\mathbf{D}_{\kappa 3-0}$	$\mathbf{D}_{\kappa 3}$					
$^{\circ}C$	$^{\circ}C$	$^{\circ}C$	$^{\circ}C$	-	т/ч	т/ч					
33,0	13,5	3,8	50,3	0,931	227,1	211,3					
31,8	13,5	3,9	49,2	0,997	227,1	226,4					
28,2	13,5	3,9	45,6	1,201	227,1	227,1					
		ТА ст.Л	№ 4 T-10	0/120-13	0						
		$W_{\kappa}=800$	00 m/ч, F	T=6200 м ²	2						
t_{rp2}	$\mathrm{Dt}_{\kappa 4}$	$\mathrm{dt}_{\kappa 4}$	t ^{nac} K4	χ	$\mathbf{D}_{\kappa 4-0}$	$\mathbf{D}_{\kappa 4}$					
$^{\circ}C$	$^{\circ}C$	$^{\circ}C$	$^{\circ}C$	-	т/ч	т/ч					
33,0	16,0	4,7	53,7	0,778	276,9	215,4					
31,8	16,0	4,8	52,6	0,832	276,9	230,3					
28,2	16,0	5,1	49,3	0,991	276,9	274,3					

Для каждой граничной точки определяется величина удельной тепловой нагрузки градирни ст. № 2 с учетом скорректированных расходов пара в конденсаторы турбоагрегатов ст. №№ 3, 4 по формулам 11.3 и 11.4 Методических указаний :

$$\begin{split} u_{\text{cp2}}^{33} &= \frac{U_{02}^{33}}{F_{\text{rp2}}} = \frac{D_{\kappa 3}^{33} \cdot \Delta h_3 + D_{\kappa 4}^{33} \cdot \Delta h_4}{F_{\text{rp2}}} = \frac{211,3 \cdot 550 + 215,4 \cdot 535}{2100} = 110,2 \frac{M\kappa a\pi}{M^2 \cdot \nu}; \\ u_{\text{cp2}}^{31,8} &= \frac{U_{02}^{31,8}}{F_{\text{rp2}}} = \frac{D_{\kappa 3}^{31,8} \cdot \Delta h_3 + D_{\kappa 4}^{31,8} \cdot \Delta h_4}{F_{\text{rp2}}} = \frac{226,4 \cdot 550 + 230,3 \cdot 535}{2100} = 118,0 \frac{M\kappa a\pi}{M^2 \cdot \nu}; \\ u_{\text{cp2}}^{28,2} &= \frac{U_{02}^{28,2}}{F_{\text{rp2}}} = \frac{D_{\kappa 3}^{28,2} \cdot \Delta h_3 + D_{\kappa 4}^{28,2} \cdot \Delta h_4}{F_{\text{rp2}}} = \frac{227,1 \cdot 550 + 274,3 \cdot 535}{2100} = 129,4 \frac{M\kappa a\pi}{M^2 \cdot \nu}. \end{split}$$

Согласно полученным точкам на рис. __ строим линию ограничения электрической нагрузки и путем интерполяции определяем величины температур наружного воздуха в граничных точках:

Зависимость температуры воды на выходе из градирни от удельной тепловой нагрузки и температуры наружного

$$33^{\circ}\text{C} - 21^{\circ}\text{C}$$

$$31.8^{\circ}\text{C} - 16.5^{\circ}\text{C}$$

 $28,2^{\circ}\text{C} - 3^{\circ}\text{C}$ соответственно.

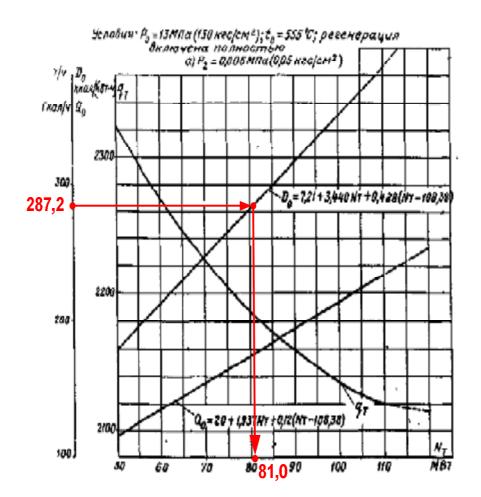
Поскольку температура наружного воздуха во всех граничных точках ниже расчетной температуры в июле месяце 25°С, необходимо построение дополнительной точки пересечения изолинии температуры наружного воздуха 25°С и линии предельно допустимого значения температуры воды на выходе из градирни ст. № 2.

При удельной тепловой нагрузке $83.7 \frac{\text{Мкал}}{\text{м}^2 \cdot \text{ч}}$ соответствующие расходы

пара в конденсаторы в дополнительной точке составят:

$$D_{\kappa 3}^{33-25} = D_{\kappa 3}^{33} \cdot \frac{u_{cp2}^{33-25}}{u_{cp2}^{33}} = 211,3 \cdot \frac{83,7}{110,2} = 160,5 \text{T/H};$$

$$D_{\kappa 4}^{33\text{-}25} = D_{\kappa 4}^{33} \cdot \frac{u_{\text{cp}2}^{33\text{-}25}}{u_{\text{cp}2}^{33}} = 215,4 \cdot \frac{83,7}{110,2} = 163,6\text{T/y}.$$


Для граничной точки 33°C скорректированные расходы пара в голову турбин с учетом неизменной доли расхода пара на регенерацию в объеме 25% от расхода в голову составят:

$$\begin{split} D_{03}^{33} &= \frac{D_{_{T3}} + D_{_{K3}}^{33}}{0.75} = \frac{100 + 211.3}{0.75} = 415.1\text{T/y}; \\ D_{04}^{33} &= \frac{D_{_{T4}} + D_{_{K4}}^{33}}{0.75} = \frac{0 + 215.4}{0.75} = 287.2\text{T/y}. \end{split}$$

Соответствующая электрическая нагрузка согласно диаграммам режимов турбоагрегатов ст. $\mathbb{N}_{2}\mathbb{N}_{2}$ 3, 4 (в конденсационном режиме и при одноступенчатом подогреве сетевой воды соответственно) (приложение ___, стр.__ настоящей пояснительной записки) составит:

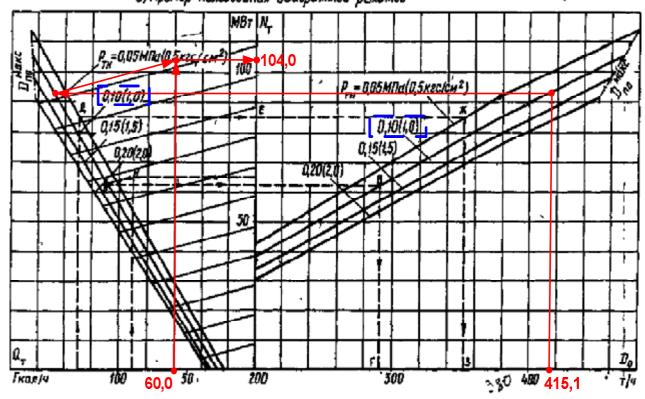
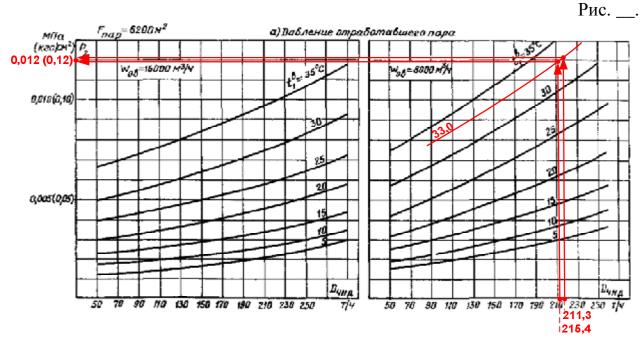
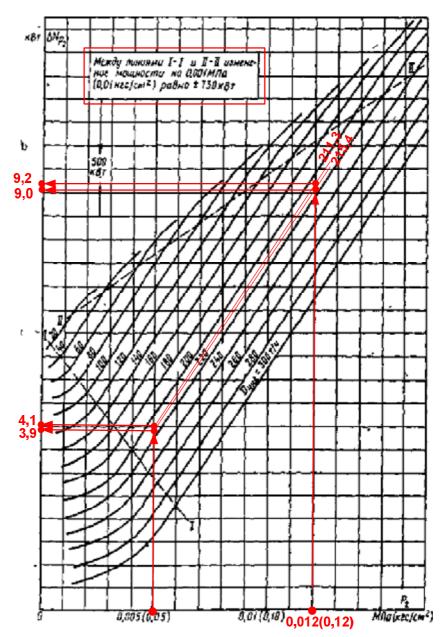

 $N_{04}^{33} = 81$ МВт для ТА ст. №4 (рис. ___);

Рис. _.



 $N_{03}^{33} = 104 MB T$ для TA ст. N = 3 (рис. _).

Условия: $P_g=13$ МПа (130 кгс/см²); $t_g=555\,^{\circ}\mathrm{C}$; $G_{0,g}=D_{0}$; $P_2=0.005$ МПа (0,05 кгс/см²); $t_{0,0}$ —рис. $E_{0,K}=$ рис. ? В) Пример пальзования диаграммой режимов


По скорректированным расходам пара в конденсаторы при температуре охлаждающей воды в граничной точке 33° С по номограммам давления в конденсаторах турбоагрегатов ст. №№ 3, 4 (приложение ___), стр. ___ настоящей пояснительной записки) определяется давление насыщения в конденсаторах (рис. ___):

 $p_{\kappa 3(4)}^{33} = 0.12 \text{kgc/cm}^2$.

По найденному давлению в конденсаторе согласно поправочным кривым (приложение _ , стр. _ настоящей пояснительной записки) определяются соответствующие поправки к мощности турбоагрегатов, определенной по диаграммам режимов, на отклонение расчетного давления в конденсаторе от номинального $0.05 \, \mathrm{krc/cm^2}$ (рис. _):

Рис. ___.

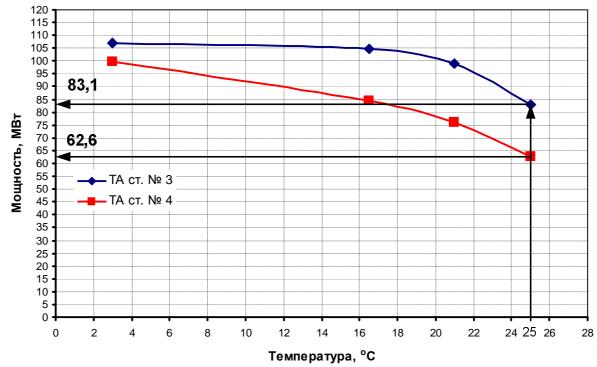
$$\Delta N_{P_2}^3 = 9.0 - 3.9 = 5.1 MB_T;$$

$$\Delta N_{P_2}^4 = 9.2 - 4.1 = 5.1 MB_T$$
.

Итоговая электрическая нагрузка турбоагрегатов ст. №№ 3, 4 в граничной точке 33°C составит:

$$N_3^{33} = N_{03}^{33} - \Delta N_{P_2}^3 = 104 - 5,1 = 98,9 MB_T;$$

$$N_{_4}^{33} = N_{_{04}}^{33} - \Delta N_{_{P_2}}^{^4} = 81 - 5{,}1 = 75{,}9MB_T$$
 .


Аналогичные расчеты проводятся для граничных точек 28,2 °C и 31,8 °C и дополнительной расчетной точки. Результаты расчетов сводятся в таблицу $_$.

	1)	_	
Тобли	TTO		
таоли	Па		

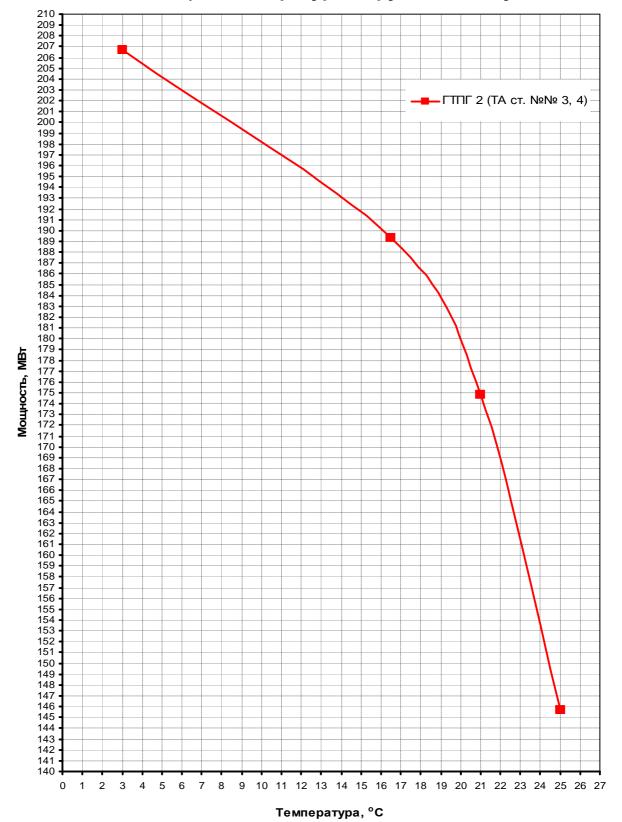

Θt _{нв}	t_{rp2}	N _{HOM}	\mathbf{D}_0	$\mathbf{D}_{\scriptscriptstyle \mathrm{T}}$	\mathbf{N}_0 \mathbf{D}_1		\mathbf{p}_2	DN_{p2}	N _{pacn}		
$^{\circ}C$	$^{\circ}C$	MBm	т/ч	т/ч	MBm	т/ч	кгс/см²	MBm	MBm		
ТА ст.№ 3 Т-100/120-130 ст. № 3											
25	33,0	100	347,3	100	87	160,5	0,103	3,9	83,1		
21	33,0	100	415,1	100	104	211,3	0,12	5,1	98,9		
16,5	31,8	100	435,3	100	110	226,4	0,12	5,1	104,9		
3	28,2	100	436,1	100	111	227,1	0,103	3,9	107,1		
ТА ст.№ 3 Т-100/120-130 ст. № 4											
25	33,0	100	218,1	0	66,5	163,6	0,104	3,9	62,6		
21	33,0	100	287,2	0	81	215,4	0,12	5,1	75,9		
16,5	31,8	100	307,1	0	89,5	230,3	0,12	5,1	84,4		
3	28,2	100	365,7	0	104,7	274,3	0,12	5,1	99,6		

Рис. ___.

Зависимость электрической нагрузки турбоагрегатов ст. №№ 3, 4 от температуры наружного воздуха

Зависимость электрической нагрузки ГТПГ2 (ТА ст. №№ 3, 4) от температуры наружного воздуха

При расчетной температуре наружного воздуха в июле месяце 25°C располагаемая мощность турбоагрегатов ст. №№ 3, 4 составит 83,1 МВт и 62,6 МВт соответственно; временные ограничения установленной мощности сезонного действия, обусловленные недостаточным количеством градирен по проекту (код 341) составят:

$$\begin{split} N_{_{orp3}} &= N_{_{HOM3}} - N_{_{pacn\,3}} = 100 - 83,1 = 16,9 MB_T \; ; \\ N_{_{orp4}} &= N_{_{HOM4}} - N_{_{pacn\,4}} = 100 - 62,6 = 37,4 MB_T \; . \end{split}$$

Результаты расчетов сведены в таблицу__ по форме приложения 4 к Методическим указаниям.

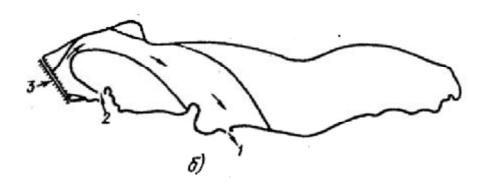
Таблица ____ Результаты расчетов обеспеченности электрической мощности циркуляционными системами водоснабжения

Станционный номер турбины, РОУ, ПВК, пикового парового котла	Тип турбины, РОУ, ПВК, пикового парового котла	Номинальный расход пара в голову турбины			Длительность подпериода 744 ч. Параметры работы турбин при прогнозируемых нагрузках отборов										
			РОУ, ПВК, пиковых паровых котлов		П-отбора		Т-отбора		встрое нных пучков	Расходы пара			Максима льная мощность		
		D _{ном}	Q _{РОУ/}	D _{РОУ/}	Qπ	D_{Π}	Q_T	D_T	Q _{вп}	свежего в голову	в конден сатор	н реген н	ераци	по результат ам расчета	
			ППК	ппк						D_0	D_{κ}	$\mathrm{D}_{\mathrm{per}}$		N_{max}	
F		т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	т/ч	т/ч	$%D_{0}$	МВт	
1	ПТ- 80/100- 130/13	470	-	-	30	18,3	80	44	-	330	137,5	82,5	25	70,5	
2	ПТ- 80/100- 130/13	470	I	I	30	18,3	80	44	-	330	137,5	82,5	25	70,5	
3	T- 100/120- 130	480	-	-	0	0	100	60	=	347,3	160,5	86,8	25	83,1	
4	T- 100/120- 130	480	_	_	0	0	0	0	_	218,1	163,6	54,5	25	62,6	

Приложение 14 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

ПРИМЕР РАСЧЕТА ОБЕСПЕЧЕННОСТИ ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ СИСТЕМАМИ ТЕХНИЧЕСКОГО ВОДОСНАБЖЕНИЯ С ВОДОХРАНИЛИЩЕМ- ОХЛАДИТЕЛЕМ

Описание причин возникновения ограничений установленной мощности


Установленная электрическая мощность Новой ГРЭС определяется номинальной мощностью пяти конденсационных турбин К-300-2400 ст. №№ 1-5 и составляет 1500 МВт. Изменений установленной мощности в _____ году не предполагается.

Ожидаемые ограничения установленной мощности носят сезонный характер и обусловлены повышением температуры охлаждающей воды на входе в конденсаторы в летний период, код причины возникновения ограничений – 349.

Описание системы технического водоснабжения

СТВС Новой ГРЭС – оборотная с водохранилищем-охладителем.

1 – водозаборное сооружение; 2 – водовыпускное сооружение; 3 – плотина

Основные параметры пруда – охладителя Новой ГРЭС: общая длина около L=8,02 км;

средняя ширина – B=0.89 км; площадь зеркала – F=7.14 км².

 $\frac{B}{L} = \frac{0.89}{8.02} = 0.11 < 0.2$, водохранилище вытянутое узкое, с продольным движением потока в одной части и тупиковой зоной в другой. Водовыпускное и

водозаборное сооружения расположены так, что транзитная зона занимает часть площади водоема.

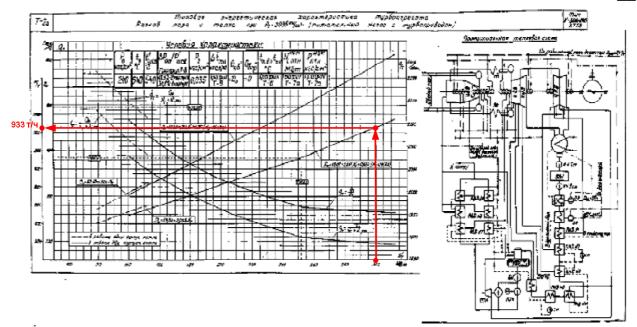
Коэффициент эффективности составляет $K_{\text{эф}}=0.7$.

Площадь активной зоны, определяемая по формуле 11.14 Методических указаний, составляет:

$$\Omega_{a\kappa m} = K_{a\phi} \cdot F = 0.7 \cdot 7.14 = 5.0 \text{ km}^2$$
.

Принципиальная схема первой очереди СТВС представлена в приложении __ к настоящей пояснительной записке, стр. __.

В систему газоохлаждения генераторов цирквода поступает с напора специальных насосов газоохлаждения (НГО), подключенных к напору циркнасосов. На каждом турбоагрегате предусмотрено по два НГО (один рабочий, один резервный). Кроме того, с напора этих же НГО цирквода используется в котельном и турбинном отделении для охлаждения вращающихся механизмов, в холодильниках пробоотборных точек и др. В системы маслоохлаждения турбин цирквода подается непосредственно с напора циркнасосов.


Отработанная охлаждающая вода из систем маслоохлаждения турбин и других вращающихся механизмов котельного и турбинного отделения сбрасывается на всас циркнасосов БНС.

Исходные данные

Среднемесячная температура воды в водохранилище-охладителе в июле месяце составляет 25° С, скорость ветра на высоте флюгера 2 м - 1 м/c (справка филиала Росгидрометцентра представлена в приложении __ к настоящей пояснительной записке, стр.).

Прогнозируемые эксплуатационные параметры работы турбоагрегатов ст. №№ 1-5 приведены в приложении 4 (стр. __ настоящей пояснительной записки). Согласно диаграмме режимов работы турбоагрегатов ст. №№ 1-5 (приложение __, стр. ___ настоящей пояснительной записки) определяется максимально возможный расход пара в голову турбины и соответствующая максимальная электрическая нагрузка:

расход пара в голову турбины:

 $D_{01-5} = 933 \text{T}/\text{Y}$;

электрическая нагрузка:

 $N_{01-5} = 300MBT$;

расход пара на регенерацию принимается в размере 30% от расчетного расхода пара в голову турбины (согласно нормативной характеристике при полностью включенной системе регенеративного подогрева, приложение __ к настоящей пояснительной записке, стр. __):

 $D_{0 \text{ per } 1-5} = 0.3 \cdot D_{0 1-5} = 0.3 \cdot 933 = 280 \text{ T} / \text{ y};$

расход пара

В

конденсатор:

 $D_{0 \text{ K} 1-5} = D_{01-5} - D_{0 \text{ Der } 1-5} = 933 - 280 = 653 \text{T} / \text{ y}$.

Расчет ограничений установленной мощности турбоагрегатов ст. №№ 1-5 по причине повышенной температуры охлаждающей воды на входе в конденсаторы

Расчетный расход циркуляционной воды в контуре CTBC определяется как минимальная из следующих величин:

суммы номинальных расходов охлаждающей воды через конденсаторы (приложение 2.1 к Методическим указаниям, представлено ранее):

$$5 \cdot W_{\kappa_{1-5}} = 5 \cdot 34800 = 174000 \ m^3 / \text{y};$$

суммарной номинальной подачи циркуляционных насосов БНС (приложение 2.1 к Методическим указаниям, представлено ранее):

$$12 \cdot W_{\text{ин 1-8}} = 12 \cdot 18000 = 216000 \ \text{м}^3 / \text{ч};$$

$$W_{\text{pacy}} = 5 \cdot W_{\text{K1-5}} = 174000 \, \text{m}^3 \, / \, \text{y} = 4176000 \, \, \text{m}^3 / \text{cyt}$$
.

Расчетный расход охлаждающей воды через конденсаторы турбоагрегатов ст.№1-5 распределяется пропорционально номинальным расходам по формуле 11.2 Методических указаний:

$$W_{\kappa l-5}^{\text{pac-4}} = \frac{W_{\kappa l-5}^{\text{HOM}}}{5 \cdot W_{\kappa l-5}^{\text{HOM}}} \cdot W_{\text{pac-4}} = \frac{34800}{5 \cdot 34800} \cdot 174000 = 34800 \text{m}^3 \, / \, \text{y} \, .$$

Удельная площадь активной зоны составляет (формула 11.15 Методических указаний):

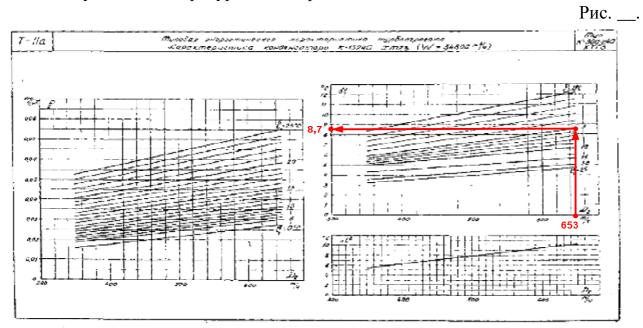
$$W_{y\partial} = \frac{\Omega_{a\kappa m}}{W_{\kappa 1-5}^{\text{pact}}} \cdot 10^6 = \frac{5.0}{4176000} \cdot 10^6 = 1.2 \text{ } M^2 \left(\text{M}^3 / \text{cym} \right).$$

Тепловая нагрузка СТВС (формула 11.16 Методических указаний) составляет:

$$U_{_0} = 5 \cdot D_{_{0\,\text{\tiny K}\,1\text{-}5}} \cdot \Delta h_{_{1\text{-}5}} = 5 \cdot 653 \cdot 535 = 1746775 \; \text{Мкал} \; / \, \text{ч} \; \text{,}$$

где Δh_{1-5} =535 ккал/кг — разность теплосодержаний отработавшего пара и конденсата согласно h-s диаграмме при нормативном давлении пара в конденсаторе и максимально допустимой влажности пара на выходе из турбины.

Средневзвешенный перепад температур в водохранилище в расчетном режиме (формула 11.17 Методических указаний) составляет:


$$\Delta t_{_{CB}} = \frac{U_{_0}}{\gamma \cdot C \cdot W_{_{pacq}}} = \frac{1746775}{1 \cdot 174000} = 10,0^{\circ}C,$$

где произведение плотности воды γ и удельной теплоемкости воды С принимается равным 1 (согласно п. 11.1.1.8 Методических указаний).

Нагрев охлаждающей воды в конденсаторах турбоагрегатов ст. №№ 1-5 (формула 11.20 Методических указаний) составляет:

$$\Delta t_{0\kappa 1-5} = \frac{D_{0\kappa 1-5} \cdot \Delta h_{1-5}}{W_{0\kappa 1-5}} = \frac{653 \cdot 535}{34800} = 10.0^{\circ} C.$$

Зададимся несколькими температурами охлаждающей воды на входе в конденсаторы в диапазоне от 5°С до 33°С с шагом 5°С. Для каждого значения температуры по номограмме температурных напоров конденсатора (приложение __ к настоящей пояснительной записке, стр. __) определяются соответствующие температурные напоры.

По формуле 11.19 Методических указаний рассчитывается соответствующая температура насыщения в конденсаторе:

$$t_{_{\rm K}1\text{-}5}^{_{_{_{_{_{1}}}}}5}=t_{_{_{_{_{_{_{_{0}}}}}}}}^{_{_{_{_{1}}}}}+\Delta t_{_{0}\,_{_{_{_{_{_{_{1}}}}}}}}+\delta t_{_{0}\,_{_{_{_{_{_{1}}}}}}}^{_{_{_{0}}}}=5,0+10,0+8,7=23,7^{\circ}C$$
 .

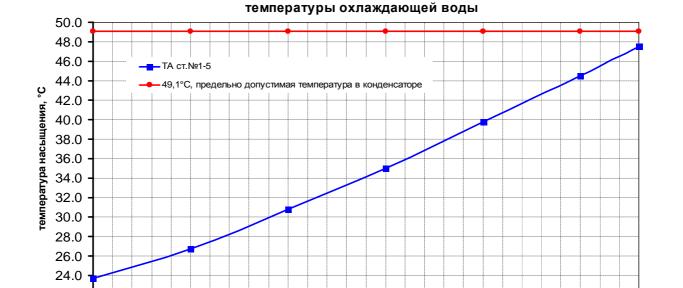

Аналогичным образом рассчитываются температуры насыщения для остальных температур охлаждающей воды на входе в конденсаторы. Результаты сводятся в таблицу, и строится график зависимости температуры насыщения от температуры на входе.

Таблица .

TA	ТА ст.№ 1-5 К-300-240								
	W _к =34800 т/ч								
$t_{\scriptscriptstyle m KOHJ}$	$\Delta t_{0 \ \kappa \ 1-5}$	$\delta t_{\kappa 1-5}$	t ^{Hac} K 1-5						
33,0	10,0	4,5	47,5						
30,0	10,0	4,5	44,5						
25,0	10,0	4,8	39,8						
20,0	10,0	5,0	35,0						
15,0	10,0	5,8	30,8						
10,0	10,0	6,7	26,7						
5,0	10,0	8,7	23,7						

Зависимость температуры насыщения в конденсаторе от

Рис. ___.

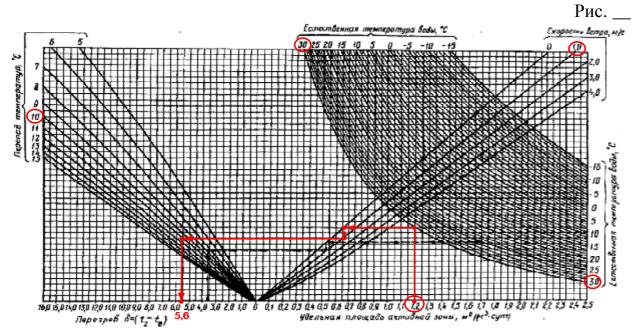
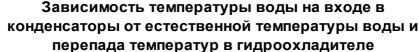
Во всем диапазоне температур охлаждающей воды на входе в конденсатор предельно допустимая температура насыщения не достигается, ограничения установленной мощности турбоагрегатов, обусловленные достижением предельно допустимого вакуума в конденсаторах (0,12 кгс/см²), отсутствуют.

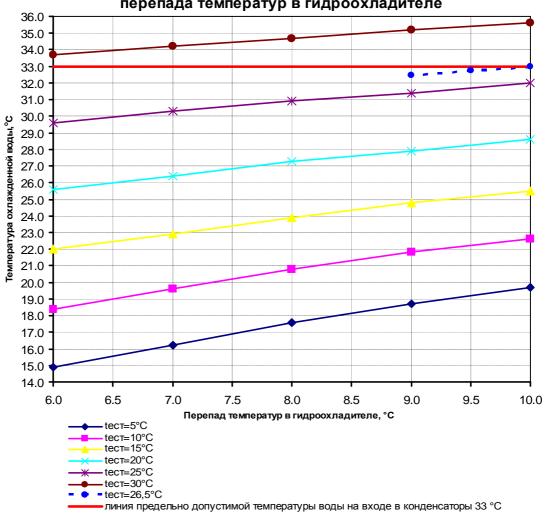
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 температура воды на входе, °С

22.0

Зададимся несколькими произвольными значениями естественной температуры воды в водохранилище-охладителе от 5°C до 30°C с шагом 5°C. Зададимся несколькими произвольными значениями перепада температур в водохранилище, не превышающими расчетного: 5°C, 6°C, 7°C, 8°C.

Для каждого сочетания температуры в естественном водоеме и перепада температур воды в водохранилище по универсальной номограмме для теплового расчета водохранилищ-охладителей определяется температура воды на входе в конденсаторы турбоагрегатов. Полученные результаты сведены в таблицу ___.

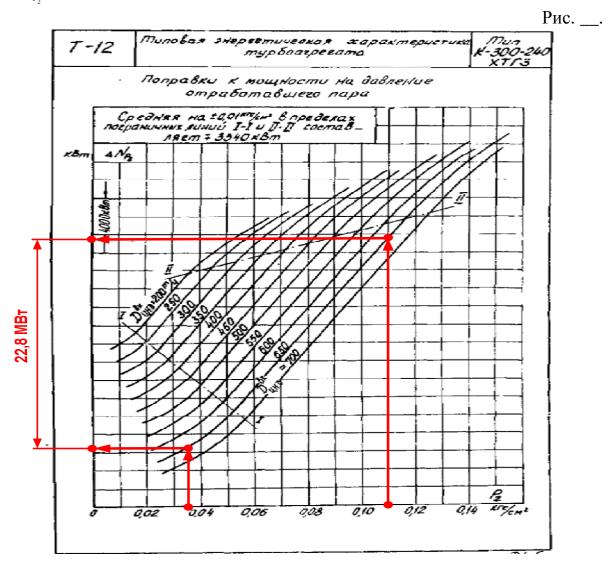

Таблица ___.

	Dt _{cB} , °C										
t _{ect} ,	10	0,0	Ģ	9,0	8	,0	7	',0	6,0		
°C	d, °C	t _{конд} , °С	d, °C	t _{конд} , °С	d, °C	t _{конд} , °С	d, °С	t _{конд} , °С	d, °C	t _{конд} , °С	
,0	14,7	19,7	13,7	18,7	12,6	17,6	11,2	16,2	9,9	14,9	
10,0	12,6	22,6	11,8	21,8	10,8	20,8	9,6	19,6	8,4	18,4	
15,0	10,5	25,5	9,8	24,8	8,9	23,9	7,9	22,9	7,0	22,0	
20,0	8,6	28,6	7,9	27,9	7,3	27,3	6,4	26,4	5,6	25,6	
25,0	7,0	32,0	6,4	31,4	5,9	30,9	5,3	30,3	4,6	29,6	
30,0	5,6	35,6	5,2	35,2	4,7	34,7	4,2	34,2	3,7	33,7	

В графическом виде результаты представлены на рис. ____

Рис. ___.

Согласно рис. __ в исходном режиме работы турбоагрегатов и перепаде температур в гидроохладителе 10°С при достижении естественной температурой величины 26,5°С (граничная точка) возникает необходимость ограничения тепловой нагрузки водохранилища по условию достижения предельно допустимой температуры воды на входе в конденсаторы 33°С и ввода соответствующего ограничения электрической нагрузки турбоагрегатов.


Для граничной точки по номограмме температурных напоров конденсаторов (приложение __ к настоящей пояснительной записке, стр. __) определяются соответствующие температурные напоры, и с учетом найденного выше нагрева воды в конденсаторах рассчитывается температура насыщения в конденсаторах. Для граничной точки 33°C температура насыщения составит:

 $t_{\kappa 1-5}^{\text{нас }33}=t_{\kappa \text{онд}}^{33}+\Delta t_{0\,\kappa 1-5}^{}+\delta t_{0\,\kappa 1-5}^{33}=33+10,0+4,5=47,5^{\circ}\text{C}$, что соответствует давлению в конденсаторе $0,11~\text{кгc/cm}^2$.

По расчетному давлению в конденсаторе согласно поправочным кривым (приложение ___ настоящей пояснительной записке, стр. ___) определяются

соответствующие поправки к мощности турбоагрегатов, определенной по диаграмме режимов, на отклонение расчетного давления в конденсаторе от нормативного 0.035 кгс/см² (рис. __):

$$\Delta N_{P_2}^{33} = 22,8MB_T$$
.

Итоговая располагаемая мощность турбоагрегатов в граничной точке составляет:

$$N_{1\text{--}5}^{33} = N_{1\text{--}5}^{33} - \Delta N_{P_2}^{33} = 300 - 22\text{,}8 = 277\text{,}2\text{MB}_T$$
 .

Для построения графика зависимости электрической мощности турбоагрегатов ст. №№ 1-5 и электростанции в целом от естественной температуры воды в водохранилище-охладителе определим величину электрической нагрузки во вспомогательной точке $t_{\rm ecc} = 5^{\circ}{\rm C}$.

Согласно номограммам, представленным на рис. __, __, __: перегрев относительно естественной температуры составит: $\delta^5 = 14,7^{\circ}\text{C}$; температура воды на входе в конденсаторы составит:

$$t_{\text{конд}}^5 = t_{\text{ест}}^5 + \delta^5 = 5 + 14,7 = 19,7$$
°C;

температурный напор составит: $\delta t_{\kappa_{1-5}}^5 = 8.7$ °C;

температура насыщения в конденсаторах составит:

$$t_{\kappa_{1-5}}^{\text{hac 5}} = t_{\kappa_{\text{OH}}}^{5} + \Delta t_{0 \kappa_{1-5}} + \delta t_{0 \kappa_{1-5}}^{5} = 19,7 + 10,0 + 8,7 = 38,4 ^{\circ}\text{C} ;$$

Величина давления в конденсаторах турбин составит: $p_{2\kappa 1-5}^5 = 0.03 \kappa rc/cm^2$;

поправка к мощности турбоагрегатов составит: $\Delta N_{P_2}^5 = -1,0 \mathrm{MBr}$;

электрическая нагрузка составит:

$$N_{1-5}^5 = N_{1-5}^5 - \Delta N_{P_2}^5 = 300 - (-1) = 301 MB_T.$$

Согласно полученным результатам для каждого турбоагрегата и всей электростанции в целом строится график зависимости электрической нагрузки от естественной температуры в водохранилище-охладителе.

Рис. ____

Зависимость электрической нагрузки ТА ст. №№ 1-5 от естественной температуры в водохранилищеохладителе

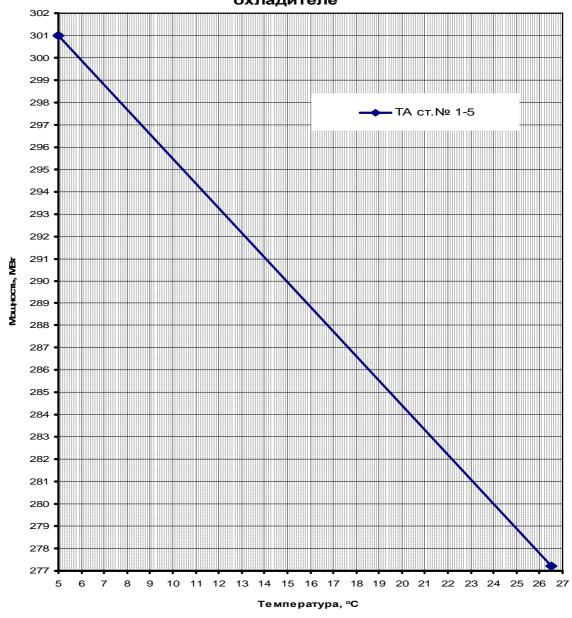
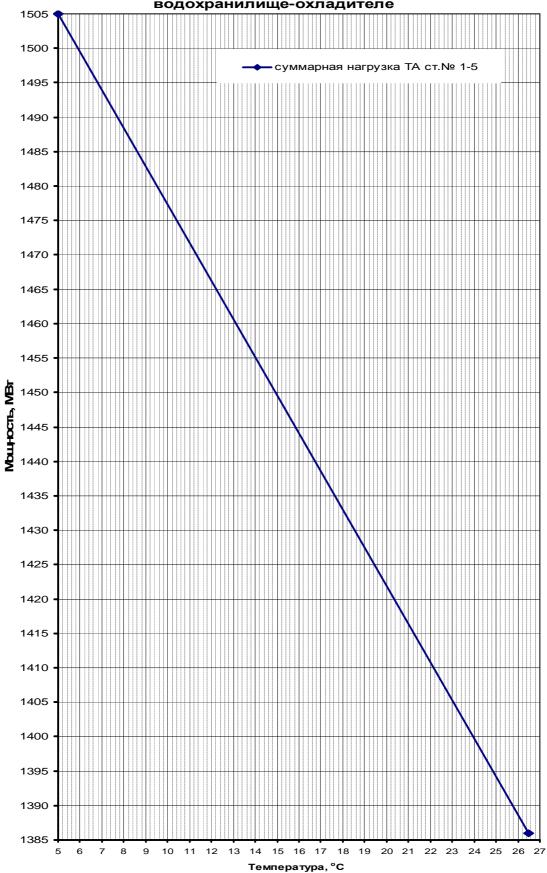



Рис. ___.

При расчетной естественной температуре воды в водохранилищеохладителе в июле месяце 25°С располагаемая мощность турбоагрегатов ст. №№ 1-5 составит 278,9МВт; временные ограничения установленной мощности сезонного действия по причине повышения температуры охлаждающей воды на входе в конденсаторы составят:

$$N_{1\text{--}5}^{\text{orp}} = N_{1\text{--}5}^{\text{hom}} - N_{1\text{--}5}^{\text{pach}} = 300 - 278{,}9 = 21{,}1\text{MB}_{\text{T}}$$
 ;

суммарно по электростанции

$$N_{\Sigma}^{ozp} = 5 \cdot 278,9 = 1394,5 \text{MBт}$$
 и

 $N_{\Sigma}^{ozp} = 1500 - 1394,5 = 105,5 MBm$ соответственно.

Результаты расчетов сведены в таблицу__ по форме приложения 4 к Методическим указаниям.

Таблица ____

турбины, парового	ПВК, котла	Номинальный расход пара в олову турбины		Отпуск тепла от							Длительность подпериода 744 ч. Параметры работы турбин при прогнозируемых нагрузках отборов					
L .	, РОУ, П	Номин: расход голову 1	РОУ, пиковых кот	паровых	П-от	П-отбора		Т-отбора		Расходы пара				Максима льная мощность		
Станционный номер РОУ, ПВК, пикового котла	Гип турбины, РОУ, ПВК, пикового парового котла	$\mathrm{D}_{\scriptscriptstyle{\mathrm{HOM}}}$	Q _{РОУ/}	$D_{POY/}$ пвк/	Q_{Π}	D_{Π}	Q_{T}	\mathbf{D}_{T}	Q _{вп}	свежег о в голову	в конден сатор	на регенера		по результат ам расчета		
Стан РОУ,	Ти		ППК	ППК						D_0	$D_{\scriptscriptstyle K}$	D_{pe}	г	N_{max}		
		т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	т/ч	т/ч	$%D_{0}$	МВт		
1	K-300- 240	933,0								933,0	653,1	279,9	30,0	278,9		
2	К-300- 240	933,0								933,0	653,1	279,9	30,0	278,9		
3	K-300- 240	933,0								933,0	653,1	279,9	30,0	278,9		
4	K-300- 240	933,0								933,0	653,1	279,9	30,0	278,9		

Приложение 15 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

ПРИМЕР РАСЧЕТА ОГРАНИЧЕНИЙ ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ, СВЯЗАННЫХ С ОТПУСКОМ ТЕПЛА ИЗ НЕРЕГУЛИРУЕМЫХ ОТБОРОВ КОНДЕНСАЦИОННЫХ ЭНЕРГОБЛОКОВ

Описание причин возникновения ограничений установленной мощности

Установленная электрическая мощность Новой ГРЭС определяется номинальной мощностью пяти конденсационных турбин К-210-130-3(6) ст. №№ 1-5 и составляет 1050МВт. Изменений установленной мощности в _____ году не предполагается.

Установленная тепловая мощность Новой ГРЭС определяется величиной отпуска тепла из нерегулируемых отборов. Новая ГРЭС является единственным источником теплоснабжения города N. Возможность отпуска тепла от других источников (водогрейные котлы, пиковые бойлерные установки, запитанные от котельных и т.п.) проектом электростанции не предусмотрена (копии соответствующих страниц проектной документации представлены в приложении __ к настоящей пояснительной записке, стр. __).

Отпуск тепловой энергии осуществляется от теплофикационных энергоблоков электростанции с подачей пара на подогреватели из нерегулируемых отборов, предназначенных для питания регенерации. При включении теплофикационной системы установки увеличивается отбор пара сверх нужд регенерации, меньшее количество пара проходит через проточную часть турбины, возникают соответствующие установленной временные ограничения мощности сезонного обусловленные отпуском тепла из нерегулируемых отборов, код ограничений – 332.

Исходные данные

Прогноз тепловых нагрузок представлен в приложении 3 к настоящей пояснительной записке (стр. _). Прогнозный отпуск тепла с горячей водой внешним потребителям и потребителям собственных нужд определен согласно статистике за предыдущие 36 месяцев, сводная таблица отпуска тепла представлена в приложении _ к настоящей пояснительной записке, стр. __.

В декабре месяце прогнозируемый отпуск тепла составит $Q_{\text{пекабрь}} = 53 \, \Gamma$ кал / ч .

Распределение тепловых нагрузок между отборами турбин представлено в приложении 4 к настоящей пояснительной записке, стр. ___.

Максимально возможные расходы пара сверх нужд регенерации и связанное с ними снижение электрической мощности представлены в таблице ____, сформированной на основании технических условий на поставку турбины K-210-130-3(6) ТУ 108-932-80 (приложение ____).

Таблица _.

Характеристика дополнительных отборов пара

Отбор	Потребитель	Параметры пара	в камере отбора	Количество	Максимальный	Недовыработ	
пара	пара	давление, кгс/см ²	температура, °С	отбираемого пара, т/ч	дополнительный отбор пара сверх отбора на регенерацию, т/ч	ка мощности одной тонной отбираемого пара, МВт/(т/ч)	
II	П6	25,6	323	44,8	50	0,330	
11	110	23,0	323	44,0	30	0,330	
III	П5+Д/П5	12,0	447	17,9	30	0,280	
IV	П4/Д	6,3	357	24,1	20	0,230	
V	П3	2,7	253	18,2	25	0,170	
VI	П2	1,2	171	25,6	25	0,125	

Расчет ограничений, обусловленных отпуском тепла из нерегулируемых отборов

В соответствии с зависимостью свойств воды и водяного пара определяются величины энтальпии пара в отборах при соответствующих давлении и температуре:

для II отбора при $t_{\rm II}=323^{\circ}{\rm C}$ и $p_{\rm II}=25,6{\rm krc/cm}^2$ энтальпия составит $h_{\rm II}=731,9$ ккал/кг ;

определяется величина энтальпии пара при давлении насыщения в отборе:

для II отбора при давлении насыщения $p_{\text{II}\,\text{Hac}}=25,6$ кгс/см² (потерями давления в трубопроводах от камеры отбора до сетевого подогревателя пренебрегаем) энтальпия насыщения составит $p_{\text{II}\,\text{Hac}}=230,0$ ккал/кг .

Рассчитываются используемые теплоперепады в отборах:

для II отбора используемый теплоперепад составит:

$$\Delta h_{\mathrm{II}} = h_{\mathrm{II}} - h_{\mathrm{II\, Hac}} = 731,9 - 230,0 = 501,9$$
ккал/кг .

Определяется расход пара в отбор, необходимый для покрытия прогнозируемой тепловой нагрузки:

расход пара во II отбор составит
$$D_{II} = \frac{Q_{\text{декабрь}}}{\Delta i_{II}} \cdot 1000 = \frac{53}{501,9} \cdot 1000 = 105 \text{т/ч} \,.$$

Согласно техническим условиям на поставку турбин рассчитывается максимально возможный расход пара сверх нужд регенерации во II отбор пяти турбин:

$$D_{\text{макс II}}^{\Sigma} = 5 \cdot D_{\text{макс II}} = 5 \cdot 50 = 250 \text{т} / \text{ч}$$
 .

Необходимый расход пара не превышает максимально допустимый, рассматриваемый режим отпуска тепла из II отбора реализуем.

Ограничение электрической мощности при отпуске тепла из II отбора составит:

$$\Delta N_{\rm II} = dN_{\rm II} \cdot D_{II} = 0.330 \cdot 105 = 34.7 \text{MBT}$$
.

Аналогичные расчеты проводятся для каждого нерегулируемого отбора, из которого возможен отпуск тепла на теплофикационную установку. Результаты расчетов сводятся в таблицу ___.

Таблица ___.

Отбор	$\mathbf{D}^{\Sigma}_{\mathrm{make}}$	Qi,	_	Параметры пара камере отбора		i _{nac i} ,	Di _i ,	D _i ,	dN _i ,	DN _i ,	
пара	і, Т/Ч	Гкал/ч	р _i , кгс/см ²	t _i , °C	і _і , ккал/кг	ккал/кг	ккал/кг	т/ч	МВт	МВт	
II	250	53,0	25,6	323,0	731,9	230	501,9	105,6	0,330	34,7	
III	150	53,0	12,0	447,0	803,1	189,8	613,3	86,4	0,280	24,2	
IV	100	53,0	6,3	357,0	759,6	161,3	598,3	88,6	0,230	20,4	
V	125	53,0	2,7	253,0	710,6	129,8	580,8	91,3	0,170	15,5	
VI	125	53,0	1,2	171,0	672,9	104,4	568,5	93,2	0,125	11,7	

Из таблицы __ следует, что минимальные ограничения мощности достигаются при отпуске тепла из VI нерегулируемого отбора и составляют 11,7 МВт.

Результаты расчетов сведены в таблицу__ по форме приложения 4 к Методическим указаниям.

Таблица ____

0		ıй В Ны								Длительность подпериода 744 ч.					
турбины, парового	Ж,	Номинальный расход пара в олову турбины	Отпуск тепла от						Параметры работы турбин при прогнозируемых нагрузках отборов						
урб	ны, РОУ, ПВК, парового котла	инал од и у ту	РОУ,	ПВК					встрое		наг	рузках отос	ров	Максима	
	РОУ,	Номин расхо, голову	пиковых		П-от	бора	Т-отб	opa	нных		Расходь	і пара		льная	
ОМЄ ЭВО	, PC	H p: roı	кот	•					пучков					мощность	
ый номер пикового котла	турбины, звого пар		$Q_{\rm POY/}$	$D_{POY/}$						свежег	В			по	
ннь К, 1	рби	Б				Г.		_		ОВ	конден	на регенера	ашию	результат ам	
щионн , ПВК,		D_{hom}	ПВК/	ПВК/	Qπ	D_{Π}	Q_{T}	D_T	$Q_{\rm BII}$	голову	сатор	perenep		расчета	
Станционный номер РОУ, ПВК, пикового котла	Тип		ппк	ппк						D_0	D_{κ}	D_{pe}	r	N_{max}	
O P		т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	Гкал/ч	т/ч	т/ч	т/ч	$%D_{0}$	МВт	
1	К-210-														
1	130-3(6)	623,0					18,6	10,6		623,0	423,7	180,7	29,0	207,7	
2	К-210-														
	130-3(6)	623,0					18,6	10,6		623,0	423,7	180,7	29,0	207,7	
3	К-210-														
	130-3(6)	623,0					18,6	10,6		623,0	423,7	180,7	29,0	207,7	
4	K-210-	622 0					10.6	10.6		622.0	100.7		20.0	207.7	
	130-3(6)	623,0					18,6	10,6		623,0	423,7	180,7	29,0	207,7	

ПРИМЕЧАНИЕ

В случае если необходимый расход пара превышает максимально возможный расход пара в заданный отбор, данный отбор на всех турбоагрегатах загружается до максимальной величины, а оставшаяся часть тепловой нагрузки переводится на отбор более высоких параметров одного или нескольких турбоагрегатов.

Приложение 16 к Методическим указаниям по определению и согласованию ограничений установленной мощности тепловых и атомных электростанций

АЛГОРИТМ И ПРИМЕР ОПРЕДЕЛЕНИЯ СРЕДНЕВЗВЕШЕННОЙ ВЕЛИЧИНЫ ТЕМПЕРАТУРЫ ВОДЫ НА ВХОДЕ В КОНДЕНСАТОРЫ ТУРБИН ПРИ НАЛИЧИИ НА ЭЛЕКТРОСТАНЦИИ ГРАДИРЕН РАЗЛИЧНЫХ ТИПОВ И ПАРАМЕТРОВ

В случае если на электростанции (очереди СТВС) имеются градирни различных типов и параметров (максимально допустимая средняя удельная тепловая нагрузка градирен, расход воды через градирню, площадь орошения) определение средневзвешенной температуры воды на выходе из градирен и построение изолиний постоянных температур $t_2^{c_B} = f(u_{cp}, \theta)$ осуществляется по нижеследующему алгоритму.

1. Определяются доли суммарной тепловой нагрузки очереди СТВС, приходящиеся на каждую находящуюся в работе градирню, по формуле:

$$\mathbf{k}_{\text{град i}} = \frac{\mathbf{u}_{\text{ср i}}^{\text{max}} \cdot \mathbf{F}_{\text{i}} \cdot \mathbf{k}_{\text{W i}}}{\mathbf{U}_{0 \, \text{факт}}^{\text{max}}}; \tag{\Pi.16.1}$$

где $u_{cp\,i}^{max}$ — максимальная удельная тепловая нагрузка градирни согласно паспортным данным;

F_i – площадь орошения i-ой градирни согласно паспортным данным;

 k_{w_i} — коэффициент, учитывающий отклонение фактического расхода воды через і-ю градирню от номинального, определяемый как отношение фактического расхода к номинальному:

$$k_{Wi} = \frac{W_{\phi \text{akt} i}}{W_{\text{HoM} i}}; \qquad (\Pi.16.2)$$

 $U_{0\phi a \kappa r}^{max}$ — максимально допустимая тепловая нагрузка очереди СТВС, определенная при фактических расходах воды через градирни:

$$U_{0\phi \text{AKT}}^{\text{max}} = \sum_{i} u_{\text{cp}\phi \text{AKT}i}^{\text{max}} \cdot F_{i} = \sum_{i} \frac{W_{\phi \text{AKT}i} \cdot \Delta t_{i}}{F_{i}} \cdot F_{i} = \sum_{i} \frac{k_{\text{W}i} \cdot W_{\text{HOM}i} \cdot \Delta t_{i}}{F_{i}} \cdot F_{i} = \sum_{i} k_{\text{W}i} \cdot u_{\text{cpi}}^{\text{max}} \cdot F_{i} ; \quad (\Pi.16.3)$$

Подставляя (П.16.3) в формулу (П.16.1) получим:

$$k_{\text{град i}} = \frac{u_{\text{cp i}}^{\text{max}} \cdot F_i \cdot k_{\text{W i}}}{\sum_{i} k_{\text{W i}} \cdot u_{\text{cp i}}^{\text{max}} \cdot F_i}$$
(II.16.4).

В частном случае при распределении фактического расхода воды в очереди СТВС пропорционально номинальным расходам воды через градирни коэффициенты k_{w_i} для каждой градирни будут одинаковы, и формула (П.16.4) примет вид:

$$k_{\text{град i}} = \frac{u_{\text{cp i}}^{\text{max}} \cdot F_{\text{i}}}{\sum_{i} u_{\text{cp i}}^{\text{max}} \cdot F_{\text{i}}} \quad (\Pi.16.5).$$

- 2. По рассчитанной согласно п. 11.1.1.7 настоящих Методических указаний величине тепловой нагрузки очереди СТВС через рассчитанные по формулам (П.16.4) или (П.16.5) долевые коэффициенты определяются тепловые нагрузки и соответствующие им удельные тепловые нагрузки каждой градирни в составе очереди СТВС.
- 3. Для определенных удельных тепловых нагрузок и принятых в п. 11.1.1.9 настоящих Методических указаний температур и расчетных значений влажности по номограммам определяются соответствующие значения температуры воды на выходе из каждой из градирен t_{2i} (°C), и согласно формуле (11.6) настоящих Методических указний рассчитывается средневзвешенная величина температуры воды после гидроохладителей.
- 4. Аналогичным образом находятся при тех же самых величинах температур и влажности значения \mathbf{t}_{2i} для нескольких произвольных величин тепловых нагрузок очереди СТВС, меньших определенной в п. 11.1.1.7 настоящих Методических указаний.

Пример: CTBC состоит из двух градирен со следующими характеристиками:

Параметр	Градирня ст.№1	Градирня ст.№2
ш ^{тах} Мкал		
$u_{\text{cp i}}^{\text{max}}, \overline{M^2 \cdot Y}$	40,0	130,0
F_i , M^2	2600	3200
\mathbf{w}		
W _{ном і} , — Ч	18600	22000

Максимальный суммарный расход воды через обе градирни определяется ограничением по производительности циркуляционных насосов с учетом МГО и составляет $37000 \text{ m}^3/\text{ч}$.

Распределение указанного расхода между градирнями осуществляется в соответствии с результатами натурных испытаний и особенностями схемы СТВС следующим образом:

Параметр	Градирня ст.№1	Градирня ст.№2
\mathbf{M}^3		
W _{факт і} , — ч	15000	22000

Максимально возможная воспринимаемая тепловая нагрузка CTBC составляет:

$$\begin{split} &U_{0\,\text{факт}}^{\text{max}} = k_{\text{W}\,1} \cdot u_{\text{cp}\,1}^{\text{max}} \cdot F_{1} + k_{\text{W}\,2} \cdot u_{\text{cp}\,2}^{\text{max}} \cdot F_{2} = \frac{W_{\text{факт}\,1}}{W_{\text{ном}\,1}} \cdot u_{\text{cp}\,1}^{\text{max}} \cdot F_{1} + \frac{W_{\text{факт}\,2}}{W_{\text{ном}\,2}} \cdot u_{\text{cp}\,2}^{\text{max}} \cdot F_{2} = \\ &= \frac{15000}{18600} \cdot 40 \cdot 2600 + \frac{22000}{22000} \cdot 130 \cdot 3200 = 499871 \frac{M \text{кал}}{Y} \end{split}$$

Пусть фактическая расчетная тепловая нагрузка СТВС составляет:

$$U_0 = 420000 \frac{M \kappa a \pi}{4}$$
.

Фактическая средняя удельная тепловая нагрузка СТВС составляет:

$$u_{_{0\,cp}} = \frac{U_{_0}}{F_{_1} + F_{_2}} = \frac{420000}{2600 + 3200} = 72,4 \frac{\text{Мкал}}{\text{м}^2 \cdot \text{ч}}$$

Долевые коэффициенты распределения тепловой нагрузки между градирнями составят:

$$k_{\text{град 1}} = \frac{u_{\text{ср1}}^{\text{max}} \cdot F_{1} \cdot k_{\text{W1}}}{U_{0 \text{ факт}}^{\text{max}}} = \frac{40 \cdot 2600 \cdot \frac{15000}{18600}}{499871} = 0,168;$$

$$k_{\text{град 2}} = \frac{u_{\text{cp 2}}^{\text{max}} \cdot F_2 \cdot k_{\text{W2}}}{U_{\text{0 datr}}^{\text{max}}} = \frac{130 \cdot 3200 \cdot \frac{22000}{22000}}{499871} = 0,832.$$

Тепловые нагрузки градирен СТВ составят:

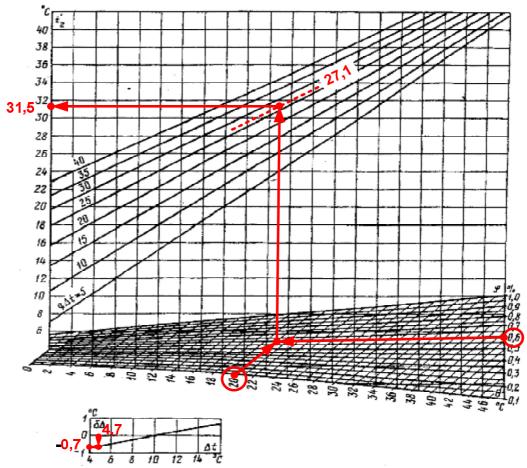
$$U_{01} = k_{\text{град 1}} \cdot U_0 = 0.168 \cdot 420000 = 70560 \frac{M \kappa a \pi}{v}$$

$$U_{02} = k_{\text{град 2}} \cdot U_0 = 0.832 \cdot 420000 = 349440 \frac{M \kappa a \pi}{v}$$

Удельные тепловые нагрузки градирен составят:

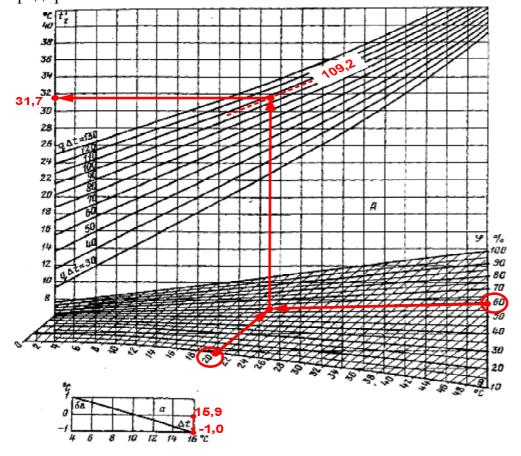
$$u_{cp1} = \frac{U_{01}}{F_1} = \frac{70560}{2600} = 27,14 \frac{M \kappa a \pi}{M^2 \cdot y};$$

$$u_{cp2} = \frac{U_{02}}{F_2} = \frac{349440}{3200} = 109,2 \frac{M \kappa a \pi}{M^2 \cdot y}.$$


Перепады температур в градирнях составят:

$$\Delta t_1 = u_{\text{cp1}} \cdot \frac{F_1}{W_{\text{darr1}}} = 27,14 \cdot \frac{2400}{15000} = 4,7^{\circ}C$$
;

$$\Delta t_2 = u_{cp2} \cdot \frac{F_2}{W_{dakr2}} = 109, 2 \cdot \frac{3200}{22000} = 15,9$$
°C.


Зададимся температурой наружного воздуха равной 20°С и относительной влажностью 60%. По номограммам градирен определяется температура воды на выходе при заданных метеоусловиях и полученных удельных тепловых нагрузках.

Градирня ст. № 1:

 $t_{rp1} = t_{rp1}^{I} + \Delta_{t1} = 31,5 - 0,7 = 30,8^{\circ}C.$

Напечатано с сайта ОАО "СО ЕЭС" www.so-ups.ru

$$t_{rp2} = t_{rp2}^{I} + \Delta_{t2} = 31,7 - 1,0 = 30,7^{\circ}C$$

30.20

30.10

30.00

68

69

70

Средневзвешенная температура охлаждающей воды после градирен СТВС составит:

$$t_{\text{cp CTB}} = \frac{t_{\text{rp1}} \cdot W_{\text{факт1}} + t_{\text{rp2}} \cdot W_{\text{факт2}}}{W_{\text{факт1}} + W_{\text{факт2}}} = \frac{30.8 \cdot 15000 + 30.7 \cdot 22000}{15000 + 22000} = 30.74 ^{\circ}\text{C} .$$

Полученная точка с координатами
$$u_{0 cp} = 72 \frac{M \kappa a \pi}{M^2 \cdot y}$$
; $t_{cp \ CTB} = 30,74 ^{\circ} C$

график зависимости средневзвешенной температуры наносится на охлажденной воды после градирен от средневзвешенной удельной тепловой нагрузки и температуры наружного воздуха (рис.__).

Рис. ____. Зависимость средневзвешенной температуры воды на выходе градирен от средневзвешенной удельной тепловой нагрузки и температуры наружного воздуха 31.00 30.90 Средневзвешенная температура охлажденной 30.80 30.70 30.60 **вод** 30.50 30.40 tнв=20oC, пропорциональное распределение тепловой нагрузки между градирнями 30.30

Аналогичным образом определяются средневзвешенные температуры

73

74

75

76

воды после градирен для нескольких значений тепловой нагрузки СТВС, меньших расчетной, и строится изолиния постоянной температуры.

72

Средневзвешенная удельная тепловая нагрузка, Мкал/м²ч

71

Перечень используемой литературы и нормативно-технической документации:

- 1. Положение о согласовании и утверждении ограничений установленной электрической мощности тепловых электростанций РД 153-34.1-09.312-99 (с изм. от 27.03.2002) ./ ОРГРЭС. М.: 1999.
- 2. Методические указания по определению обеспеченности электрической мощности электростанций циркуляционными системами водоснабжения РД 153-34.1-22.508-2001./ ОРГРЭС. М.: 2001.
- 3. ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»
- 4. Методические рекомендации к расчету водохранилищ-охладителей ТЭС. / ВНИИГ им. Б.Е. Веденеева. Л.: 1976.
- 5. Указания по нормированию показателей работы гидроохладителей в энергетике./ СПО Союзтехэнерго. М.: 1981.
- 6. Типовая инструкция по эксплуатации брызгальных установок РД 34.22.507-90/ СПО ОРГРЭС. М.: 1991.
- 7. Типовая инструкция по приемке в эксплуатацию башенных градирен РД 34.22.402-94 / АО "Фирма ОРГРЭС" М.: 1994.
- 8. СНиП 23-01-99 «Строительная климатология» 1999 г. (с изм. 2003 г.)
- 9. Тепловые и атомные электрические станции Учебник для вузов по направлению "Теплоэнергетика" и теплоэнергетическим специальностям энергетических вузов и факультетов / Л. С. Стерман, В. М. Лавыгин, С. Г. Тишин . 3-е изд., перераб. М. : Изд-во МЭИ, 2004 . 424 с.
- 10. «Турбины тепловых и атомных электростанций». Учебник для ВУЗов 2-е изд., перераб. и доп./ А.Г. Костюк, В.В. Фролов, А.Е. Булкин, А.Д. Трухний; под ред. А.Г. Костюка, В.В. Фролова.— М.: Издательство МЭИ, 2001. 488 с. с ил.
- 11. Методические указания по определению ограничений установленной мощности тепловых электростанций МУ 34-70-084-84./СПО Союзтехэнерго, М.: 1984/